(9分)已知,為上的點(diǎn).
(1)當(dāng)為中點(diǎn)時(shí),求證;
(2)當(dāng)二面角——的大小為的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)
已知四棱錐的底面是矩形,側(cè)棱長(zhǎng)相等,棱錐的高為4,其俯視圖如圖所示.
(1)作出此四棱錐的主視圖和側(cè)視圖,并在圖中標(biāo)出相關(guān)的數(shù)據(jù);
(2)求該四棱錐的側(cè)面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分13分)
一個(gè)多面體的直觀圖和三視圖如下: (其中分別是中點(diǎn))
(1)求證:平面;
(2)求多面體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知正三棱柱ABC—A1B1C1的側(cè)面對(duì)角線A1B與側(cè)面成45°角,AB=4cm,求這個(gè)棱柱的側(cè)面積。(12分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題12分)
如圖1所示,在平行六面體ABCD—A1B1C1D1中,已知AB=5,AD=4,AA1=3,AB⊥AD,∠A1AB=∠A1AD=。(1)求證:頂點(diǎn)A1在底面ABCD上的射影O在∠BAD的平分線上;
(2)求這個(gè)平行六面體的體積。
圖1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,F(xiàn)D垂直于矩形ABCD所在平面,CE//DF, ∠DEF=900。
(1)求證:BE//平面ADF;
(2)若矩形ABCD的一個(gè)邊AB="3," 另一邊BC=2,EF=2,求幾何體ABCDEF的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:單選題
設(shè)m,n是兩條不同的直線,、、是三個(gè)不同的平面,給出下列命題,正確的是( ).
A.若,,則 |
B.若,,則 |
C.若,,則 |
D.若,,,則 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分12分)請(qǐng)你設(shè)計(jì)一個(gè)包裝盒,如下圖所示,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去陰影部分所示的四個(gè)全等的等腰直角三角形,再沿虛線折起,使得A、B、C、D四個(gè)點(diǎn)重合于圖中的點(diǎn)P,正好形成一個(gè)正四棱挪狀的包裝盒E、F在AB上,是被切去的一等腰直角三角形斜邊的兩個(gè)端點(diǎn).設(shè)AE= FB=x(cm).
(I)某廣告商要求包裝盒的側(cè)面積S(cm2)最大,試問(wèn)x應(yīng)取何值?
(II)某廠商要求包裝盒的容積V(cm3)最大,試問(wèn)x應(yīng)取何值?并求出此時(shí)包裝盒的高與底面邊長(zhǎng)的比值.[
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分10分)如圖,網(wǎng)格紙的小正方形的邊長(zhǎng)是1,在其上用粗線畫(huà)出了某多面體的三視圖,求這個(gè)多面體最長(zhǎng)的一條棱的長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com