(本小題滿(mǎn)分12分)
已知四棱錐的底面是矩形,側(cè)棱長(zhǎng)相等,棱錐的高為4,其俯視圖如圖所示.
(1)作出此四棱錐的主視圖和側(cè)視圖,并在圖中標(biāo)出相關(guān)的數(shù)據(jù);
(2)求該四棱錐的側(cè)面積.
解: (1)如圖所示,主視圖和側(cè)視圖都為等腰三角形。…………6分(每個(gè)圖3分)
(2) 該四棱錐有兩個(gè)側(cè)面VAD、VBC是全等的等腰三角形,且BC邊上的高為 , …………………………………………8分
另兩個(gè)側(cè)面VAB. VCD也是全等的等腰三角形,AB邊上的高為 …………………………………………………10分
因此 …………12分
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分14分)
如圖所示,在正三棱柱ABC -A1B1C1中,底面邊長(zhǎng)和側(cè)棱長(zhǎng)都是2,D是側(cè)棱CC1上任意一點(diǎn),E是A1B1的中點(diǎn)。
(I)求證:A1B1//平面ABD;
(II)求證:AB⊥CE;
(III)求三棱錐C-ABE的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知頂點(diǎn)的坐標(biāo)為,,.
(1)求點(diǎn)到直線(xiàn)的距離及的面積;
(2)求外接圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
.(9分)下圖是一幾何體的直觀(guān)圖、主視圖、俯視圖、左視圖.
(1)若F為PD的中點(diǎn),求證:AF⊥面PCD;
(2)證明BD∥面PEC;
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
如圖所示,平面PAD⊥平面ABCD,ABCD為正方形,PA⊥AD,且PA=AD=2,E,F,G分別是線(xiàn)段PA,PD,CD的中點(diǎn)。
(1)求證:BC//平面EFG;
(2)求三棱錐E—AFG的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
如圖,四邊形ABCD為正方形,四邊形BDEF為矩形,AB=2BF,E丄平面ABCD,G為EF中點(diǎn).
(1)求證:CF//平面
(2) 求證:平面ASG丄平面CDG;
(3)求二面角C—FG—B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題13分)
一個(gè)用鮮花做成的花柱,它的下面是一個(gè)直徑為2m、高為4m的圓柱形物體,上面是一個(gè)直徑為2m的半球形體,如果每平方米大約需要鮮花200朵,那么裝飾這個(gè)花柱大約需要多少朵鮮花(取3.1)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)
一個(gè)四棱錐的三視圖如圖所示:
(1)根據(jù)圖中標(biāo)出的尺寸畫(huà)出直觀(guān)圖(不要求寫(xiě)畫(huà)法步驟);
(2)求三棱錐A-PDC的體積;高考資源網(wǎng)
(3)試在PB上求點(diǎn)M,使得CM∥平面PDA并加以證明。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(9分)已知,為上的點(diǎn).
(1)當(dāng)為中點(diǎn)時(shí),求證;
(2)當(dāng)二面角——的大小為的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com