Loading [MathJax]/jax/output/CommonHTML/jax.js
7.在標(biāo)準(zhǔn)情況下,同時(shí)建立直角坐標(biāo)系與極坐標(biāo)系已知圓:ρ=4cosθ,直線{x=a22ty=22t
(1)求圓的參數(shù)方程;
(2)若直線與圓相切,求a及直線的極坐標(biāo)方程.

分析 (1)化圓的極坐標(biāo)方程為普通方程,然后化為圓的標(biāo)準(zhǔn)方程為參數(shù)方程;
(2)求出圓心到直線l的距離d,從而求得a的值;將直線參數(shù)方程轉(zhuǎn)化為普通方程,然后化為直線的標(biāo)準(zhǔn)方程為極坐標(biāo)方程.

解答 解:(1)由ρ=4cosθ,得ρ2=4ρcosθ,即x2-4x+y2=0,
配方為(x-2)2+y2=4.
設(shè)x-2=2cosα,則y=2sinα,α∈[0,2π).
則圓的參數(shù)方程{x=2+2cosαy=2sinα
(2)由直線{x=a22ty=22t得到y(tǒng)+x-a=0.
由(1)知,圓的方程為:(x-2)2+y2=4.
則該圓的圓心是(2,0),半徑是2,
所以當(dāng)直線與圓相切時(shí),d=2=|2a|2,
解得a=2-22或a=2+22;
故直線是y+x-2+22=0或y+x-2-22=0.
∵x=ρcosθ,y=ρsinθ,
∴極坐標(biāo)方程式 ρcosθ+ρsinθ-2+22=0或ρcosθ+ρsinθ-2-22=0.

點(diǎn)評(píng) 本題考查了極坐標(biāo)方程化為直角坐標(biāo)方程、參數(shù)方程化為普通方程、直線與圓的位置關(guān)系、點(diǎn)到直線的距離公式,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.已知a>0,b>0且ab=a+b,則a+4b的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.直線l:(k+1)x-ky-1=0(k∈R)與圓C:x2+(y-1)2=1的位置關(guān)系是( �。�
A.相交B.相切C.相離D.相交或相切

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知雙曲線x2a2-y22=1(a>0,b>0)的一條漸近線方程是y=52x,則該雙曲線的離心率等于( �。�
A.31414B.324C.32D.43

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.在直角坐標(biāo)xOy中,C1{x=ty=t+5t為參數(shù)),在以坐標(biāo)原點(diǎn)為極點(diǎn),x軸正半軸為極軸的極坐標(biāo)系中,曲線C2ρ2+2ρ2sin2θ3=0
(1)求C1的普通方程與C2的參數(shù)方程;
(2)根據(jù)(1)中你得到的方程,求曲線C2上任意一點(diǎn)P到C1的最短距離,并確定取得最短距離時(shí)P點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.i4n+i4n+1+i4n+2+i4n+3=0(n為正整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.“a=2”是“直線(a2-a)x+y=0和直線2x+y+1=0互相平行”的充分不必要條件,若曲線y2=xy+2x+k通過(guò)點(diǎn)(a,-a)(a∈R),則k的取值范圍是[12+

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知向量a=(2cosωx,1),=(2sin(ωx+2π3),-3),函數(shù)f(x)=a的最小正周期為π.
(1)求f(x)在[-π,π]上的單調(diào)增區(qū)間;
(2)若存在x∈[0,π6],使f(x-π4)>|m-2|成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知向量m=(3sinx4,1),n=(cosx4,cos2x4),若mn=1,求cos(x+π3)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案
闂傚倷鑳舵灙濡ょ姴绻橀獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磻婵犲洤绠柨鐕傛嫹