已知函數(shù)在點處的切線方程為,且對任意的,恒成立.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)求實數(shù)的最小值;
(Ⅲ)求證:().
(Ⅰ) (Ⅱ)
(Ⅲ)先證,累加即得.
【解析】
試題分析:(Ⅰ)將代入直線方程得,∴①
,∴②
聯(lián)立,解得∴
(Ⅱ),∴在上恒成立;
即在恒成立;
設(shè),,
∴只需證對于任意的有
設(shè),
1)當,即時,,∴
在單調(diào)遞增,∴
2)當,即時,設(shè)是方程的兩根且
由,可知,分析題意可知當時對任意有;
∴,∴
綜上分析,實數(shù)的最小值為.
(Ⅲ)令,有即在恒成立;
令,得
∴原不等式得證.
考點:利用導數(shù)研究曲線上某點切線方程;函數(shù)解析式的求解及常用方法;不等式的證明.
點評:本題考查了利用導數(shù)研究函數(shù)的切線方程問題,在曲線上某點處的切線的斜率就是該點的導數(shù)值,考查了導數(shù)在最大值和最小值中的應(yīng)用,體現(xiàn)了數(shù)學轉(zhuǎn)化思想和分類討論的數(shù)學思想.特別是(Ⅲ)的證明,用到了放縮法和裂項相消,此題屬難度較大的題目.
科目:高中數(shù)學 來源:2014屆遼寧省五校協(xié)作體屆高三摸底考試理科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)在點處的切線方程是x+ y-l=0,其中e為自然對數(shù)的底數(shù),函數(shù)g(x)=1nx- cx+ 1+ c(c>0),對一切x∈(0,+)均有恒成立.
(Ⅰ)求a,b,c的值;
(Ⅱ)求證:.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆云南省高二下學期期末考試文科數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)在點處的切線方程為.
(1)求函數(shù)的解析式;
(2)若經(jīng)過點可以作出曲線的三條切線,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2014屆江西省南昌市高二2月份月考文科數(shù)學試卷(解析版) 題型:解答題
(本小題13分)已知函數(shù)在點處的切線與直線垂直.
(1)若對于區(qū)間上任意兩個自變量的值都有,求實數(shù)的最小值;
(2)若過點可作曲線的三條切線,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年江蘇省蘇南四校高三12月月考試數(shù)學試卷(解析版) 題型:解答題
已知函數(shù)在點處的切線方程為
(1)求函數(shù)的解析式;
(2)若對于區(qū)間[-2,2]上任意兩個自變量的值都有求實數(shù)c的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com