已知函數(shù)在點(diǎn)處的切線方程為

(1)求函數(shù)的解析式;

(2)若經(jīng)過點(diǎn)可以作出曲線的三條切線,求實(shí)數(shù)的取值范圍.

 

【答案】

(1)

(2)

【解析】

試題分析:解:(I).                            

根據(jù)題意,得解得 

所以.                                   

(II)設(shè)切點(diǎn)為,則,,切線的斜率為

=,即.       

∵過點(diǎn)可作曲線的三條切線,

∴方程有三個(gè)不同的實(shí)數(shù)解,

∴函數(shù)有三個(gè)不同的零點(diǎn),

的極大值為正、極小值為負(fù)                           

.令,則,列表:

(-∞,0)

0

(0,2)

2

(2,+∞)

+

0

-

0

-

極大值

極小值

,解得實(shí)數(shù)的取值范圍是.      

考點(diǎn):導(dǎo)數(shù)的運(yùn)用

點(diǎn)評:主要是考查了導(dǎo)數(shù)在研究函數(shù)單調(diào)性中的運(yùn)用,屬于中檔題。

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆遼寧省五校協(xié)作體屆高三摸底考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)在點(diǎn)處的切線方程是x+ y-l=0,其中e為自然對數(shù)的底數(shù),函數(shù)g(x)=1nx- cx+ 1+ c(c>0),對一切x∈(0,+)均有恒成立.

(Ⅰ)求a,b,c的值;

(Ⅱ)求證:.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省高三第一次(3月)周測理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)在點(diǎn)處的切線方程為,且對任意的恒成立.

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)求實(shí)數(shù)的最小值;

(Ⅲ)求證:).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省南昌市高二2月份月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題13分)已知函數(shù)在點(diǎn)處的切線與直線垂直.

(1)若對于區(qū)間上任意兩個(gè)自變量的值都有,求實(shí)數(shù)的最小值;

(2)若過點(diǎn)可作曲線的三條切線,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省蘇南四校高三12月月考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)在點(diǎn)處的切線方程為

(1)求函數(shù)的解析式;

(2)若對于區(qū)間[-2,2]上任意兩個(gè)自變量的值都有求實(shí)數(shù)c的最小值.

 

查看答案和解析>>

同步練習(xí)冊答案