已知函數(shù)在點處的切線方程是x+ y-l=0,其中e為自然對數(shù)的底數(shù),函數(shù)g(x)=1nx- cx+ 1+ c(c>0),對一切x∈(0,+)均有恒成立.

(Ⅰ)求a,b,c的值;

(Ⅱ)求證:.

 

【答案】

(Ⅰ),,;(Ⅱ)詳見解析.

【解析】

試題分析:(Ⅰ)利用導(dǎo)數(shù)的幾何意義求、,利用導(dǎo)數(shù)導(dǎo)數(shù)法判斷單調(diào)性,用函數(shù)的最值積恒成立求;(Ⅱ)構(gòu)造新函數(shù),利用導(dǎo)數(shù)法求的最小值,利用結(jié)合(Ⅰ)中的結(jié)論進行證明.

試題解析:(Ⅰ),,,

,.                                   (2分)

,由于,

 所以當時,是增函數(shù),

 當時,是減函數(shù),

 ,

恒成立,,即恒成立,①      (4分)

,則

上是增函數(shù),上是減函數(shù),

,即,當且僅當時等號成立 .

,

 由①②可知,,所以.            (6分)

(Ⅱ)證法一:所求證不等式即為.

設(shè),,

時,是減函數(shù),

時,是減函數(shù),

,即.              (8分)

由(Ⅰ)中結(jié)論②可知,,,時,,

從而                    (10分)

.

(或者也可)

,原不等式成立.                            (12分)

考點:導(dǎo)數(shù)法判斷函數(shù)的單調(diào)性,恒成立,不等式的證明.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014屆云南省高二下學(xué)期期末考試文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)在點處的切線方程為

(1)求函數(shù)的解析式;

(2)若經(jīng)過點可以作出曲線的三條切線,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省高三第一次(3月)周測理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)在點處的切線方程為,且對任意的,恒成立.

(Ⅰ)求函數(shù)的解析式;

(Ⅱ)求實數(shù)的最小值;

(Ⅲ)求證:).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆江西省南昌市高二2月份月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

(本小題13分)已知函數(shù)在點處的切線與直線垂直.

(1)若對于區(qū)間上任意兩個自變量的值都有,求實數(shù)的最小值;

(2)若過點可作曲線的三條切線,求實數(shù)的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省蘇南四校高三12月月考試數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)在點處的切線方程為

(1)求函數(shù)的解析式;

(2)若對于區(qū)間[-2,2]上任意兩個自變量的值都有求實數(shù)c的最小值.

 

查看答案和解析>>

同步練習(xí)冊答案