1.一個幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.4+2$\sqrt{2}$B.4+3$\sqrt{2}$C.8D.2+$\sqrt{2}$+$\sqrt{5}$+$\sqrt{10}$

分析 畫出滿足條件的幾何體的直觀圖,分別求出各個面的面積,相加可得答案.

解答 解:由已知可得該幾何體的直觀圖如下圖所示:

其中VA=VC=BC=2,OV=OA=OC=$\sqrt{2}$,
OB=$\sqrt{6}$,AC=VB=2$\sqrt{2}$,AB=2$\sqrt{3}$,
故底面△ABC的面積為:$\sqrt{2}$,
側(cè)面△VAB的面積為:2$\sqrt{2}$,
側(cè)面△VAC的面積為:2,
側(cè)面△VBC的面積為:2,
故該幾何體的表面積為:4+3$\sqrt{2}$,
故選:B

點評 本題考查的知識點是棱柱和棱錐的體積和表面積,空間幾何體的三視圖,難度不大,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.一個半徑為2的球體經(jīng)過切割后,剩余部分幾何體的三視圖如圖所示,則該幾何體的體積為8π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知0<α<$\frac{π}{2}$,$\frac{π}{2}$<β<π,且cos(α+$\frac{π}{4}$)=$\frac{1}{3}$,cos($\frac{π}{4}$-$\frac{β}{2}$)=$\frac{{\sqrt{3}}}{3}$,
(1)求cosβ的值;            
(2)求cos(2α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.從5,6,7,8,9中任取兩個不同的數(shù),事件A=“取到的兩個數(shù)之和為偶數(shù)”,事件B=“取到的兩個數(shù)均為偶數(shù)”,則P(B|A)=( 。
A.$\frac{2}{5}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1}{3}$x3-ex2+mx+1,g(x)=$\frac{{lnx+{2^{-1}}}}{{{e^{2x}}}}$.
(1)函數(shù)f(x)在點(1,f(1))處的切線與直線(1-2e)x-y+4=0平行,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)設(shè)函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),對任意的x1,x2∈(0,+∞),若$\frac{{g({x_1})-{f^'}({x_2})}}{{{e^{x_1}}-1}}$<0恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.某廠生產(chǎn)甲產(chǎn)品每千克需用原料A和原料B分別為a1、b1千克,生產(chǎn)乙產(chǎn)品每千克需用原料A和原料B分別為a2、b2千克.甲、乙產(chǎn)品每千克可獲利潤分別為d1、d2元.月初一次性購進(jìn)本月用原料A、B各c1、c2千克.要計劃本月生產(chǎn)甲、乙兩種產(chǎn)品各多少千克才能使月利潤總額達(dá)到最大.在這個問題中,設(shè)全月生產(chǎn)甲、乙兩種產(chǎn)品分別為x千克、y千克,月利潤總額為z元,那么,用于求使總利潤z=d1x+d2y最大的數(shù)學(xué)模型中,約束條件為( 。
A.$\left\{\begin{array}{l}{{a}_{1}x+{a}_{2}y≥{c}_{1}}\\{_{1}x+_{2}y≥{c}_{2}}\\{x≥0}\\{y≥0}\end{array}\right.$
B.$\left\{\begin{array}{l}{{a}_{1}x+_{1}y≤{c}_{1}}\\{{a}_{2}x+_{2}y≤{c}_{2}}\\{x≥0}\\{y≥0}\end{array}\right.$
C.$\left\{\begin{array}{l}{{a}_{1}x+{a}_{2}y≤{c}_{1}}\\{_{1}x+_{2}y≤{c}_{2}}\\{x≥0}\\{y≥0}\end{array}\right.$
D.$\left\{\begin{array}{l}{{a}_{1}x+{a}_{2}y={c}_{1}}\\{_{1}x+_{2}y={c}_{2}}\\{x≥0}\\{y≥0}\end{array}\right.$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)f(x)=alnx-x在區(qū)間(1,2)上單調(diào)遞增,則實數(shù)a的取值范圍是[2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題說法正確的是( 。
A.命題:“若x2+y2=1,則x=0且y=1”的否命題是:“若x2+y2≠1,則x≠0且y≠1”
B.命題“?x∈R,x2+x-1>0”的否定是“?x∈R,x2+x-1<0”
C.函數(shù)y=f(x+1)是偶函數(shù),則f(x)的圖象關(guān)于x=1對稱
D.向量$\overrightarrow a∥\overrightarrow b\;,\;\overrightarrow b∥\overrightarrow c$,則$\overrightarrow a∥\overrightarrow c$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.以下六個寫法中:①{0}∈{0,1,2};  ②∅⊆{1,2};   ③∅∈{0}④{0,1,2}={2,0,1};  ⑤0∈∅;  ⑥A∩∅=A,正確的個數(shù)有(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

同步練習(xí)冊答案