【題目】已知橢圓C:+=1(a>b>0)的離心率為,且過(guò)點(diǎn)(1,).
(I)求橢圓C的方程;
(Ⅱ)設(shè)與圓O:x2+y2=相切的直線l交橢圓C與A,B兩點(diǎn),求△OAB面積的最大值,及取得最大值時(shí)直線l的方程.
【答案】(I)(Ⅱ)△OAB面積的最大值為,此時(shí)直線方程
【解析】
試題分析:(1)運(yùn)用橢圓的離心率公式和點(diǎn)滿足橢圓方程,解方程可得a,b,進(jìn)而得到橢圓方程;(2)討論①當(dāng)k不存在時(shí),②當(dāng)k存在時(shí),設(shè)直線為y=kx+m,A,B,將直線y=kx+m代入橢圓方程,運(yùn)用韋達(dá)定理和弦長(zhǎng)公式,以及直線和圓相切的條件:d=r,結(jié)合基本不等式即可得到所求面積的最大值和直線l的方程
試題解析:(1)由題意可得,e==,a2﹣b2=c2,點(diǎn)(1,)代入橢圓方程,可得
+=1,解得a=,b=1,即有橢圓的方程為;
(2)①當(dāng)k不存在時(shí),x=±時(shí),可得y=±,S△OAB=××=;
②當(dāng)k存在時(shí),設(shè)直線為y=kx+m,A(x1,y1),B(x2,y2),
將直線y=kx+m代入橢圓方程可得(1+3k2)x2+6kmx+3m2﹣3=0,
x1+x2=﹣,x1x2=,
由直線l與圓O:x2+y2=相切,可得=,即有4m2=3(1+k2),
|AB|==
==
=≤=2,
當(dāng)且僅當(dāng)9k2= 即k=±時(shí)等號(hào)成立,可得S△OAB=|AB|r≤×2×=,
即有△OAB面積的最大值為,此時(shí)直線方程y=±x±1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出定義在上的兩個(gè)函數(shù),.
(1)若在處取最值.求的值;
(2)若函數(shù)在區(qū)間上單調(diào)遞減,求實(shí)數(shù)的取值范圍;
(3)試確定函數(shù)的零點(diǎn)個(gè)數(shù),并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),函數(shù)與有相同極值點(diǎn).
(1)求函數(shù)的最大值;
(2)求實(shí)數(shù)的值;
(3)若,不等式恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)().
(1)求的單調(diào)區(qū)間和極值;
(2)求在上的最小值.
(3)設(shè),若對(duì)及有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若c=2,sinB=2sinA.
(1)若C=,求a,b的值;
(2)若cosC=,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若<<0,則下列不等式:①<;②|a|+b>0;③a->b-;④lna2>lnb2中,正確的是( )
(A)①④ (B)②③ (C)①③ (D)②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】pH值是水溶液的重要理化參數(shù)。若溶液中氫離子的濃度為[H](單位:mol/l),則其pH值為-lg[H]。在標(biāo)準(zhǔn)溫度和氣壓下,若水溶液pH=7,則溶液為中性,pH<7時(shí)為酸性,pH>7時(shí)為堿性。例如,甲溶液中氫離子濃度為0.0001mol/l,其pH為-1g 0.0001,即pH=4。已知乙溶液的pH=2,則乙溶液中氫離子濃度為______mol/l。若乙溶液中氫離子濃度是丙溶液的兩千萬(wàn)倍,則丙溶液的酸堿性為______(填中性、酸性或堿性)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐中,底面為矩形,側(cè)面底面,,,.
(1)證明:;
(2)設(shè)與平面所成的角為,求二面角的余弦值的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某玩具生產(chǎn)公司每天計(jì)劃生產(chǎn)衛(wèi)兵、騎兵、傘兵這三種玩具共100個(gè),生產(chǎn)一個(gè)衛(wèi)兵需5分鐘,生產(chǎn)一個(gè)騎兵需7分鐘,生產(chǎn)一個(gè)傘兵需4分鐘,已知總生產(chǎn)時(shí)間不超過(guò)10小時(shí),若生產(chǎn)一個(gè)衛(wèi)兵可獲利潤(rùn)5元,生產(chǎn)一個(gè)騎兵可獲利潤(rùn)6元,生產(chǎn)一個(gè)傘兵可獲利潤(rùn)3元.
(1)用每天生產(chǎn)的衛(wèi)兵個(gè)數(shù)與騎兵個(gè)數(shù)表示每天的利潤(rùn)(元);
(2)怎樣分配生產(chǎn)任務(wù)才能使每天的利潤(rùn)最大,最大利潤(rùn)是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com