【題目】已知函數(shù),函數(shù)有相同極值點(diǎn).

1求函數(shù)的最大值;

2求實(shí)數(shù)的值;

3,不等式恒成立,求實(shí)數(shù)的取值范圍.

【答案】1;2;3.

【解析】

試題分析:1,所以上為增函數(shù),在上為減函數(shù),故函數(shù)的最大值為21得極值點(diǎn)為,故,解得;3由于,故,由于,故,后面根據(jù)的正負(fù)進(jìn)行分類討論,由此求出實(shí)數(shù)的取值范圍為.

試題解析:

1,

,得;由,得

上為增函數(shù),在上為減函數(shù),

函數(shù)的最大值為.

2因?yàn)?/span>,所以,

1知,是函數(shù)的極值點(diǎn),又因?yàn)楹瘮?shù)有相同極值點(diǎn),

是函數(shù)的極值點(diǎn),,解得

經(jīng)檢驗(yàn),當(dāng)時(shí),函數(shù)取到極小值,符合題意

3因?yàn)?/span>,,

,即,

,,由2知,,

上,;當(dāng)時(shí),

上為減函數(shù),在上為增函數(shù),

,,,而,

,,

當(dāng),即時(shí),對(duì)于,不等式恒成立

,,

,由,得.

當(dāng)時(shí),即,對(duì)于,不等式恒成立

,

,

綜上所述,所求的實(shí)數(shù)的取值范圍為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以直角坐標(biāo)系的原點(diǎn)為極點(diǎn)軸的非負(fù)半軸為極軸建立極坐標(biāo),且兩坐標(biāo)系取相同的長(zhǎng)度單位.已知點(diǎn)的極坐標(biāo)為的極坐標(biāo)方程為,為曲線上的動(dòng)點(diǎn)到定點(diǎn)的距離等于圓的半徑

(1)求曲線的直角坐標(biāo)方程;

(2)若過(guò)點(diǎn)的直線的參數(shù)方程為為參數(shù)),且直線與曲線交于兩點(diǎn),的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】四棱錐中,點(diǎn)在平面內(nèi)的射影在棱上,,底面是梯形,,且

1求證:平面平面

2若直線所成角為60°,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】給出下列四個(gè)命題中:

①函數(shù)的一個(gè)對(duì)稱中心為;

②若, 為第一象限角,且,則;

③若,則存在實(shí)數(shù),使得;

④點(diǎn)是三角形所在平面內(nèi)一點(diǎn),且滿足,則點(diǎn)是三角形的內(nèi)心.

其中正確的序號(hào)是__________.(把你認(rèn)為正確的序號(hào)都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】命題p:關(guān)于x的不等式x2+2ax+40對(duì)于一切x∈R恒成立,命題q:x∈11,2], x2-a≥0,若p∨q為真,p∧q為假,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為

1求曲線的直角坐標(biāo)方程并指出其形狀;

2設(shè)是曲線上的動(dòng)點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn),過(guò)點(diǎn)動(dòng)直線交與點(diǎn)兩點(diǎn).

(1)若,求直線的傾斜角;

(2)求線段中點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C:+=1(ab0)的離心率為,且過(guò)點(diǎn)(1,).

(I)求橢圓C的方程;

(Ⅱ)設(shè)與圓O:x2+y2=相切的直線l交橢圓C與A,B兩點(diǎn),求OAB面積的最大值,及取得最大值時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】有兩枚大小相同、質(zhì)地均勻的正四面體玩具,每個(gè)玩具的各個(gè)面上上分別寫著數(shù)字1,2,3,5,同時(shí)投擲這兩枚玩具一次,記為兩個(gè)朝下的面上的數(shù)字之和.

1)求事件不小于6”的概率;

2為奇數(shù)的概率和為偶數(shù)的概率是不是相等?證明你作出的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案