【題目】火把節(jié)是彝族、白族、納西族、基諾族、拉祜族等民族的古老傳統(tǒng)節(jié)日,有著深厚的民俗文化內(nèi)涵,被稱為“東方的狂歡節(jié)”涼山州旅游局為了解民眾對火把節(jié)知識的知曉情況,對西昌市區(qū) A,B 兩小區(qū)的部分居民開展了問卷調(diào)查,他們得分(滿分100分)數(shù)據(jù),統(tǒng)計結(jié)果如下:

A小區(qū)

得分范圍/分

頻率

B小區(qū)

(1)以每組數(shù)據(jù)的中點值作為該組數(shù)據(jù)的代表,求B小區(qū)的平均分;

(2)若A小區(qū)得分在內(nèi)的人數(shù)為人,B小區(qū)得分在內(nèi)的人數(shù)為人,求在 A,B 兩小區(qū)中所有參加問卷調(diào)查的居民中得分不低于分的頻率;

【答案】(1);(2)0.08.

【解析】

(1)由頻率分布直方圖即可得到B小區(qū)的平均分;

(2)分別求出A,B小區(qū)不低于分的居民數(shù),即可得到結(jié)果.

解(1)設(shè)B小區(qū)的平均分為

B小區(qū)的平均分為

(2)A小區(qū)得分為分的頻率為

A小區(qū)被問卷調(diào)查的居民共有(人)

B小區(qū)得分為分的頻率為

B小區(qū)被問卷調(diào)查的居民共有(人)

A小區(qū)不低于分的居民共有(人)

B小區(qū)不低于分的居民共有(人)

所有參加問卷調(diào)查的居民得分不低于分的頻率為:

,

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,ADBC是四面體ABCD中互相垂直的棱,BC=2. AD=2c,且AB+BD=AC+CD=2a,其中ac為常數(shù),則四面體ABCD的體積的最大值是 .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,,,.

(1)求證:;

(2)若,的中點.

(i)過點作一直線平行,在圖中畫出直線并說明理由;

(ii)求平面將三棱錐分成的兩部分體積的比.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如下圖,在正方體中,點分別為棱,的中點,點為上底面的中心,過三點的平面把正方體分為兩部分,其中含的部分為,不含的部分為,連接的任一點,設(shè)與平面所成角為,則的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知是定義在R上的偶函數(shù)且以2為周期,則“上的增函數(shù)”是“上的減函數(shù)”的  

A. 充分而不必要的條件B. 必要而不充分的條件

C. 充要條件D. 既不充分也不必要的條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知橢圓的離心率為,且橢圓短軸的一個頂點到一個焦點的距離等于.

(1)求橢圓的方程;

(2)設(shè)經(jīng)過點的直線交橢圓,兩點,點.

①若對任意直線總存在點,使得,求實數(shù)的取值范圍;

②設(shè)點為橢圓的左焦點,若點的外心,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a∈R,命題p:x∈[-2,-1],x2-a≥0,命題q:

(1)若命題p為真命題,求實數(shù)a的取值范圍;

(2)若命題“p∨q”為真命題,命題“p∧q”為假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】當前,以“立德樹人”為目標的課程改革正在有序推進.高中聯(lián)招對初三畢業(yè)學生進行體育測試,是激發(fā)學生、家長和學校積極開展體育活動,保證學生健康成長的有效措施.程度2019年初中畢業(yè)生升學體育考試規(guī)定,考生必須參加立定跳遠、擲實心球、1分鐘跳繩三項測試,三項考試滿分50分,其中立定跳遠15分,擲實心球15分,1分鐘跳繩20分.某學校在初三上期開始時要掌握全年級學生每分鐘跳繩的情況,隨機抽取了100名學生進行測試,得到下邊頻率分布直方圖,且規(guī)定計分規(guī)則如下表:

每分鐘跳繩個數(shù)

得分

17

18

19

20

(Ⅰ)現(xiàn)從樣本的100名學生中,任意選取2人,求兩人得分之和不大于35分的概率;;

(Ⅱ)若該校初三年級所有學生的跳繩個數(shù)服從正態(tài)分布,用樣本數(shù)據(jù)的平均值和方差估計總體的期望和方差,已知樣本方差(各組數(shù)據(jù)用中點值代替).根據(jù)往年經(jīng)驗,該校初三年級學生經(jīng)過一年的訓(xùn)練,正式測試時每人每分鐘跳繩個數(shù)都有明顯進步,假設(shè)今年正式測試時每人每分鐘跳繩個數(shù)比初三上學期開始時個數(shù)增加10個,現(xiàn)利用所得正態(tài)分布模型:

預(yù)計全年級恰有2000名學生,正式測試每分鐘跳182個以上的人數(shù);(結(jié)果四舍五入到整數(shù))

若在全年級所有學生中任意選取3人,記正式測試時每分鐘跳195以上的人數(shù)為ξ,求隨機變量的分布列和期望.

附:若隨機變量服從正態(tài)分布,則,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若采用隨機模擬的方法估計某運動員射擊擊中目標的概率.先由計算器給出0到9之間取整數(shù)的隨機數(shù),指定0,1,2,3表示沒有擊中目標,4,5,6,7,8,9表示擊中目標,以4個隨機數(shù)為一組,代表射擊4次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了20組如下的隨機數(shù):

7327 0293 7140 9857 0347 4373 8636 6947 1417 4698

0371 6233 2616 8045 6011 3661 9597 7424 7610 4281

根據(jù)以上數(shù)據(jù)估計該運動員射擊4次至少擊中3次的概率為__________

查看答案和解析>>

同步練習冊答案