如圖,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點(diǎn)為F1,右焦點(diǎn)為F2,過F1的直線交橢圓于A、B兩點(diǎn),△ABF2的周長為8,且△AF1F2面積最大時(shí),△AF1F2為正三角形.
(1)求橢圓E的方程;
(2)設(shè)動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P,且與直線x=4相交于點(diǎn)Q,證明:點(diǎn)M(1,0)在以PQ為直徑的圓上.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:圓錐曲線的定義、性質(zhì)與方程
分析:(1)已知△ABF2的周長為8,即4a=8,求得a,再由△AF1F2面積最大時(shí),△AF1F2為正三角形可得橢圓的離心率,則c可求,進(jìn)一步求得b,則橢圓方程可求;
(2)聯(lián)立直線和橢圓方程,化為關(guān)于x的一元二次方程后由判別式等于0得到k與m的關(guān)系,從而求得直線與橢圓的公共點(diǎn)的坐標(biāo),再由直線y=kx+m與x=4聯(lián)立求得Q的坐標(biāo),然后利用取特殊值法求得以PQ為直徑的圓與x軸的交點(diǎn)坐標(biāo),進(jìn)一步證明
MP
MQ
=0
得答案.
解答: 解:(1)∵過F1的直線交橢圓于A、B兩點(diǎn),且△ABF2的周長為8,
∴4a=8,a=2.
∵△AF1F2面積最大時(shí),△AF1F2為正三角形,
∴e=
1
2
,即
c
a
=
1
2

∴c=1,
∴b2=a2-c2=3.
∴橢圓E的方程為
x2
4
+
y2
3
=1

(2)由
y=kx+m
x2
4
+
y2
3
=1
,消元可得(4k2+3)x2+8kmx+4m2-12=0.
∵動(dòng)直線l:y=kx+m與橢圓E有且只有一個(gè)公共點(diǎn)P(x0,y0),
∴m≠0,△=0,
∴(8km)2-4×(4k2+3)×(4m2-12)=0.
∴4k2-m2+3=0.
此時(shí)x0=-
4km
4k2+3
=-
4k
m
,y0=
3
m

即P(-
4k
m
,
3
m

y=kx+m
x=4
,得Q(4,4k+m).
取k=0,m=
3
,此時(shí)P(0,
3
),Q(4,
3
),
以PQ為直徑的圓為(x-2)2+(y-
3
2=4,交x軸于點(diǎn)M1(1,0)或M2(3,0).
取k=-
1
2
,m=2,此時(shí)P(1,
3
2
),Q(4,0),
以PQ為直徑的圓為(x-
5
2
2+(y-
3
4
2=
45
16
,交x軸于點(diǎn)M3(1,0)或M4(4,0).
故若滿足條件的點(diǎn)M存在,只能是M(1,0),
證明如下∵
MP
=(-
4k
m
-1,
3
m
)
,
MQ
=(3,4k+m)
,
MP
MQ
=-
12k
m
-3+
12k
m
+3=0

故以PQ為直徑的圓恒過y軸上的定點(diǎn)M(1,0).
點(diǎn)評(píng):本題橢圓方程的求法,考查直線與橢圓的位置關(guān)系的應(yīng)用,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,訓(xùn)練了特值化思想在解題中的應(yīng)用,考查了計(jì)算能力,是高考試卷中的壓軸題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,AB是⊙O的直徑,弦BD、CA的延長線相交于點(diǎn)E,EF垂直BA的延長線于點(diǎn)F.求證.
(Ⅰ)∠DEA=∠DFA;
(Ⅱ)AB2=BE•BD-AE•AC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,以原點(diǎn)O為圓心,橢圓的短半軸長為半徑的圓與直線x-y+
6
=0相切.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線L:y=kx+m與橢圓C相交于A、B兩點(diǎn),且kOA•kOB=-
b2
a2
,求證:△AOB的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的焦距為2,且過點(diǎn)(1,
2
2
),右焦點(diǎn)為F2.設(shè)A,B是C上的兩個(gè)動(dòng)點(diǎn),線段AB的中點(diǎn)M的橫坐標(biāo)為-
1
2
,線段AB的中垂線交橢圓C于P,Q兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)求
F2P
F2Q
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)拋物線y2=2px(p>0)的焦點(diǎn)為F,點(diǎn)A(0,
2
)
,線段FA的中點(diǎn)在拋物線上.設(shè)動(dòng)直線l:y=kx+m與拋物線相切于點(diǎn)P,且與拋物線的準(zhǔn)線相交于點(diǎn)Q,以PQ為直徑的圓記為圓C.
(1)求p的值;
(2)試判斷圓C與x軸的位置關(guān)系;
(3)在坐標(biāo)平面上是否存在定點(diǎn)M,使得圓C恒過點(diǎn)M?若存在,求出M的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ACBD內(nèi)接于圓O,對(duì)角線AC與BD相交于M,AC⊥BD,E是DC中點(diǎn)連結(jié)EM交AB于F,作OH⊥AB于H,求證:
(1)EF⊥AB          
(2)OH=ME.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo),直線l:y=
3
x-3經(jīng)過橢圓E:
x2
a2
+
y2
b2
=1
(a>b>0)的一個(gè)焦點(diǎn),且點(diǎn)(0,b)到直線l的距離為2.
(1)求橢圓E的方程;
(2)A、B、C是橢圓上的三個(gè)動(dòng)點(diǎn)A與B關(guān)于原點(diǎn)對(duì)稱,且|AC|=|CB|.問△ABC的面積是否存在最小值?若存在,求此時(shí)點(diǎn)C的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理)已知雙曲線x2-y2=a2(其中a>0).
(1)若定點(diǎn)A(4,0)到雙曲線上的點(diǎn)的最近距離為
5
,求a的值;
(2)若過雙曲線的左焦點(diǎn)F1,作傾斜角為α的直線l交雙曲線于M、N兩點(diǎn),其中α∈(
π
4
4
),F(xiàn)2是雙曲線的右焦點(diǎn).求△F2MN的面積S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)變量x,y滿足約束條件
x+2y≥2
2x+y≤4
4x-y≥-1
,則3x-y的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案