如圖,四邊形ACBD內(nèi)接于圓O,對角線AC與BD相交于M,AC⊥BD,E是DC中點連結(jié)EM交AB于F,作OH⊥AB于H,求證:
(1)EF⊥AB          
(2)OH=ME.
考點:與圓有關(guān)的比例線段
專題:直線與圓
分析:(1)由已知條件推導(dǎo)出ME=CE,∠CME=∠MCB,從而得到∠AMF=∠ABM,由此能夠證明EF⊥AB.
(2)由已知條件推導(dǎo)出EF∥OH,HM∥OE,從而得到四邊形HMEO是平行四邊形,由此能夠證明OH=ME.
解答: 證明:(1)∵AC⊥BD,CE=DE,
∴ME=CE,∠CME=∠MCB,
∵∠ABM=∠MCB,∠AMF=∠EMC,
∴∠AMF=∠ABM,
∴∠FAM+∠AMF=∠ABM+MAB=90°,
∴EF⊥AB.
(2)∵E是CD的中點,∴OE⊥CD,OH⊥AB,
由(1)EF⊥AB,又OH⊥AB,
EF∥OH,同理,HM∥OE,
∴四邊形HMEO是平行四邊形,
∴OH=ME.
點評:本題考查直線垂直的證明,考查線段相等的證明,解題時要認真審題,注意圓的性質(zhì)的靈活運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E是棱CC1的中點,F(xiàn)是側(cè)面B1BCC1上的動點,并且A1F∥平面AED1,則動點F的軌跡是(  )
A、圓B、橢圓C、拋物線D、線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是二次函數(shù)且滿足f(x+1)+f(x-1)=x2-2x-1,求函數(shù)f(x)解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
sin2x
sinx
+2sinx.
(1)求函數(shù)f(x)的定義域和最小正周期;
(2)若f(α)=2,α∈[0,π],求f(α+
π
12
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的左焦點為F1,右焦點為F2,過F1的直線交橢圓于A、B兩點,△ABF2的周長為8,且△AF1F2面積最大時,△AF1F2為正三角形.
(1)求橢圓E的方程;
(2)設(shè)動直線l:y=kx+m與橢圓E有且只有一個公共點P,且與直線x=4相交于點Q,證明:點M(1,0)在以PQ為直徑的圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an+1-an=2,a1=2,等比數(shù)列{bn}滿足b1=a1,b4=a8
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)設(shè)cn=anbn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人玩投籃游戲,規(guī)則如下:兩人輪流投籃,每人至多投2次,甲先投,若有人投中即停止投籃,結(jié)束游戲,已知甲每次投中的概率為
1
4
,乙每次投中的概率為
1
3
,求游戲結(jié)束時.
(Ⅰ)甲、己投籃次數(shù)之和為3的概率;
(Ⅱ)乙投籃次數(shù)不超過1次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,當n≥2,n∈N*時,an=3an-1-1,數(shù)列{bn}的前n項和Sn滿足Sn=2n2+2n-2,n∈N*.(Ⅰ)求數(shù)列{an}、{bn}的通項公式;
(Ⅱ)若cn=(an-
1
2
)•bn(n∈N*),求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有兩個命題:①方程x2+ax+9=0沒有實數(shù)根;②實數(shù)a為非負數(shù).如果這兩個命題中有且只有一個是真命題,那么實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案