下列各式中,表示yx的函數(shù)的有()
y=x-(x-3);       ②y=+;
y=  ④y=
A.4個B.3個C.2個D.1個
C
①③表示yx的函數(shù);在②中由x,因為函數(shù)定義域不能是空集,所以②不表示yx的函數(shù);在④中若x=0,則對應的y的值不唯一,所以④不表示yx的函數(shù)
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)求證:為定值;
(Ⅱ)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù),則(    ).
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知過函數(shù)fx)=的圖象上一點B(1,b)的切線的斜率為-3.
(1)求a、b的值;
(2)求A的取值范圍,使不等式fx)≤A-1987對于x∈[-1,4]恒成立;
.是否存在一個實數(shù)t,使得當時,g(x)有最大值1?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù),函數(shù)的圖像與函數(shù)
的圖像關于直線對稱.
(1)求函數(shù)的解析式;
(2)若函數(shù)在區(qū)間上的值域為,
求實數(shù)的取值范圍;
(3)設函數(shù),試用列舉法表示集合.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某賓館有客房300間,每間日房租為100元時,每天都客滿,賓館欲提高檔次,并提高租金,如果每間日房租每增加10元,客房出租數(shù)就會減少10間,若不考慮其他因素,該賓館將房間租金提高到多少元時,每天客房的租金總收入最高,并求出日租金的最大值?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)為常數(shù))是實數(shù)集R上的奇函數(shù),函數(shù)是區(qū)間[-1,1]上的減函數(shù).
(1)求a的值; (2)若上恒成立,求的取值范圍;
(3)討論關于的根的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

2009年10月27日全國人大通過了關于修改個人所得稅法的決定,工薪所得減除費用標準從800元提高到1600元,也就是說原來收入超過800元的部分就要納稅,2009年1月1日開始超過1600元才納稅,若稅法修改前后超過部分的稅率相同,如下表:
級數(shù)
全月應納稅所得額
稅率(﹪)
1
小于等于500元
5
2
大于500且小于等于2000元
10
3
大于2000且小于等于5000元
15
試問:如果某人2009年9月交納個人所得稅123元,那么按照新稅法,他只要交稅
A.43元B.33元C.23元D.53元

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

.設函數(shù)y=f(x)的定義域為(0,+∞),且對任意的正實數(shù)x, y,均有
f(xy)=f(x)+f(y)恒成立.已知f(2)=1,且當x>1時,f(x)>0。
(1)求f(1), f()的值;
(2)試判斷y=f(x)在(0,+∞)上的單調性,并加以證明;
(3)一個各項均為正數(shù)的數(shù)列{a­n}滿足f(Sn)=f(an)+f(an+1)-1,n∈N*,其中Sn是數(shù)列{an}的前n項和,求數(shù)列{an}的通項公式;
(4)在(3)的條件下,是否存在正數(shù)M,使2n·a1·a2…an≥M·.(2a1-1)·(2a2-1)…(2an-1)對于一切n∈N*均成立?若存在,求出M的范圍;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案