【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在平面直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以直角坐標(biāo)系的原點為極點, 軸的正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.

(Ⅰ)求曲線的直角坐標(biāo)方程和直線的普通方程;

(Ⅱ)若直線與曲線相交于, 兩點,求的面積.

【答案】(Ⅰ) (Ⅱ)

【解析】試題分析:(Ⅰ)由, 可得曲線的直角坐標(biāo)方程,直線消去參數(shù)即可;

(Ⅱ)將直線的參數(shù)方程化為t為參數(shù)),與拋物線聯(lián)立得,設(shè)兩點對應(yīng)的參數(shù)分別為, ,原點到直線的距離即可得解.

試題解析:

(Ⅰ)由曲線的極坐標(biāo)方程為,得,

所以曲線的直角坐標(biāo)方程是

由直線的參數(shù)方程為t為參數(shù)),得直線的普通方程

(Ⅱ)由直線的參數(shù)方程為t為參數(shù)),得t為參數(shù)),

代入,得

設(shè)兩點對應(yīng)的參數(shù)分別為,

所以,

因為原點到直線的距離

所以

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知M(x1,y1)是橢圓=1(a>b>0)上任意一點,F為橢圓的右焦點.

(1)若橢圓的離心率為e,試用ea,x1表示|MF|,并求|MF|的最值;

(2)已知直線m與圓x2y2b2相切,并與橢圓交于A、B兩點,且直線m與圓的切點Qy軸右側(cè),若a=4,求△ABF的周長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

1求曲線在點處的切線方程;

2,求證:有且僅有兩個零點;

3為整數(shù),且當(dāng)恒成立,的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為研究晝夜溫差大小與某疾病的患病人數(shù)之間的關(guān)系,經(jīng)查詢得到今年上半年每月15號的晝夜溫差情況與患者的人數(shù)如表:

日期

115

215

315

415

515

615

晝夜溫差

10

11

10

10

9

7

患者人數(shù)

21

26

20

18

16

8

研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進行檢驗.

若選取的是1月與6月的兩組數(shù)據(jù),請根據(jù)25月份的數(shù)據(jù),求出y關(guān)于x的線性回歸方程

若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2人,則認(rèn)為得到的線性回歸方程是理想的,試問中所得線性回歸方程是否理想?

參考公式:,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面內(nèi)動點到兩定點的距離之和為4.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)已知直線的傾斜角均為,直線過坐標(biāo)原點且與曲線相交于, 兩點,直線過點且與曲線是交于 兩點,求證:對任意 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面內(nèi)動點到兩定點的距離之和為4.

(Ⅰ)求動點的軌跡的方程;

(Ⅱ)已知直線的傾斜角均為,直線過坐標(biāo)原點且與曲線相交于, 兩點,直線過點且與曲線是交于, 兩點,求證:對任意 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的最大值為, 的圖像關(guān)于軸對稱.

1)求實數(shù), 的值.

2)設(shè),則是否存在區(qū)間使得函數(shù)在區(qū)間上的值域為?若存在求實數(shù)的取值范圍;若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知圓,點是圓上任意一點,線段的垂直平分線和半徑相交于.

(1)求動點的軌跡的方程;

(2)已知是軌跡的三個動點,點在一象限, 關(guān)于原點對稱,且,問的面積是否存在最小值?若存在,求出此最小值及相應(yīng)直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給定點,若是直線上位于第一象限內(nèi)的一點,直線軸的正半軸相交于點.試探究:的面積是否具有最小值?若有,求出點的坐標(biāo);若沒有,則說明理由.若點為直線上的任意一點,情況又會怎樣呢?

查看答案和解析>>

同步練習(xí)冊答案