【題目】已知焦點在y軸上的拋物線過點,橢圓的兩個焦點分別為,,其中與的焦點重合,過點與的長軸垂直的直線交于A,B兩點,且,曲線是以坐標原點O為圓心,以為半徑的圓.
(1)求與的標準方程;
(2)若動直線l與相切,且與交于M,N兩點,求的面積S的最小值.
【答案】(1):;:;(2)
【解析】
(1)設的方程為,將點代入,可求出方程,及坐標,再由,可求出橢圓方程;由是以坐標原點O為圓心,以為半徑的圓,求出半徑的值,即可得到的標準方程;
(2)由動直線l與相切,可知圓心到直線的距離為1,從而可得的面積,根據(jù)直線的斜率存在和不存在兩種情況,分別討論,并結合韋達定理及弦長公式,可求出的面積S的表達式,進而求出最小值即可.
(1)由題意,設的方程為,則,解得,即為,,
設橢圓的方程為,焦點為,將代入橢圓方程可得,
由,解得,故的方程為,
由,可知圓的圓心為,半徑為1,故的方程為.
(2)由動直線l與相切,可知圓心到直線的距離為1,所以的面積.
若的斜率不存在,其方程為,將代入的方程,可得,則,此時;
若的斜率存在,設方程為,則,整理得,
聯(lián)立,消去得,
則恒成立,
設,,則,,
則,
將代入,可得,
令,則,
所以,
令,,函數(shù)在上單調遞減,即,
故.
因為,所以的面積S的最小值為.
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(,為參數(shù)),以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的坐標方程為,若直線與曲線相切.
(1)求曲線的極坐標方程;
(2)在曲線上取兩點、于原點構成,且滿足,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】記表示m,n中的最大值,如.已知函數(shù),.
(1)設,求函數(shù)在上的零點個數(shù);
(2)試探討是否存在實數(shù),使得對恒成立?若存在,求a的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),曲線在處的切線方程為.
(1)求實數(shù)的值;
(2)且時,證明:曲線的圖象恒在切線的上方;
(3)證明:不等式:.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=aex,g(x)=lnx-lna,其中a為常數(shù),且曲線y=f(x)在其與y軸的交點處的切線記為l1,曲線y=g(x)在其與x軸的交點處的切線記為l2,且l1∥l2.
(1)求l1,l2之間的距離;
(2)若存在x使不等式成立,求實數(shù)m的取值范圍;
(3)對于函數(shù)f(x)和g(x)的公共定義域中的任意實數(shù)x0,稱|f(x0)-g(x0)|的值為兩函數(shù)在x0處的偏差.求證:函數(shù)f(x)和g(x)在其公共定義域內的所有偏差都大于2.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C:+=1(a>b>0)的離心率為,直線l:x+2y=4與橢圓有且只有一個交點T.
(I)求橢圓C的方程和點T的坐標;
(Ⅱ)O為坐標原點,與OT平行的直線l′與橢圓C交于不同的兩點A,B,直線l′與直線l交于點P,試判斷是否為定值,若是請求出定值,若不是請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】 設橢圓的左焦點為,左頂點為,頂點為B.已知(為原點).
(Ⅰ)求橢圓的離心率;
(Ⅱ)設經(jīng)過點且斜率為的直線與橢圓在軸上方的交點為,圓同時與軸和直線相切,圓心在直線上,且,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)積極響應國家“科技創(chuàng)新”的號召,大力研發(fā)人工智能產(chǎn)品,為了對一批新研發(fā)的產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù),如下表所示:
試銷單價(百元) | 1 | 2 | 3 | 4 | 5 | 6 |
產(chǎn)品銷量(件) | 91 | 86 | 78 | 73 | 70 |
附:參考公式:,,
參考數(shù)據(jù):,,.
(1)求的值;
(2)已知變量,具有線性相關關系,求產(chǎn)品銷量(件)關于試銷單價(百元)的線性回歸方程(計算結果精確到整數(shù)位);
(3)用表示用正確的線性回歸方程得到的與對應的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)的殘差的絕對值時,則將銷售數(shù)據(jù)稱為一個“有效數(shù)據(jù)”.現(xiàn)從這6組銷售數(shù)據(jù)中任取2組,求抽取的2組銷售數(shù)據(jù)都是“有效數(shù)據(jù)”的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com