【題目】已知函數(shù),其中,,.
(Ⅰ)若是偶函數(shù),求實數(shù)的值;
(Ⅱ)當時,求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若對任意,都有恒成立,求實數(shù)的最小值.
【答案】(Ⅰ)0;(Ⅱ)單調(diào)遞增區(qū)間為,,單調(diào)減區(qū)間為:,;(Ⅲ)1.
【解析】
(Ⅰ)根據(jù)偶函數(shù)的性質(zhì),得出,即可求出實數(shù)的值;
(Ⅱ)當時,分類討論去絕對值得出分段函數(shù),畫出的圖象,根據(jù)圖象和二次函數(shù)的性質(zhì),即可得出函數(shù)的單調(diào)區(qū)間;
(Ⅲ)根據(jù)題意,由任意,都有恒成立,得出,得出,再分類討論和,得出的最大值,從而得出的最小值.
解:(Ⅰ)是偶函數(shù),故,
即,
則,解得:.
(Ⅱ)當時,
則,
當時,,對稱軸為,
結(jié)合圖象,易知的單調(diào)遞增區(qū)間為,,
的單調(diào)減區(qū)間為:,.
(Ⅲ)∵對任意,都有恒成立,
即對任意,都有恒成立,
∴,
且對任意實數(shù),,恒成立,
①當,時,
恒成立,
②當,時,
恒成立,
③當,時,
由恒成立,則,
④當時,對一切時恒成立,
當時,,
∵,∴,
∴,
綜上所述,的最小值為1.
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,,底面四邊形為直角梯形,,,為線段上一點.
(1)若,則在線段上是否存在點,使得平面?若存在,請確定點的位置;若不存在,請說明理由
(2)己知,若異面直線與成角,二而角的余弦值為,求的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地有10個著名景點,其中8 個為日游景點,2個為夜游景點.某旅行團要從這10個景點中選5個作為二日游的旅游地.行程安排為第一天上午、下午、晚上各一個景點,第二天上午、下午各一個景點.
(1)甲、乙兩個日游景點至少選1個的不同排法有多少種?
(2)甲、乙兩日游景點在同一天游玩的不同排法有多少種?
(3)甲、乙兩日游景點不同時被選,共有多少種不同排法?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為鼓勵應屆畢業(yè)大學生自主創(chuàng)業(yè),國家對應屆畢業(yè)大學生創(chuàng)業(yè)貸款有貼息優(yōu)惠政策,現(xiàn)有應屆畢業(yè)大學生甲貸款開小型超市,初期投入為72萬元,經(jīng)營后每年的總收入為50萬元,該公司第年需要付出的超市維護和工人工資等費用為萬元,已知為等差數(shù)列,相關信息如圖所示.
(Ⅰ)求;
(Ⅱ)該超市第幾年開始盈利?(即總收入減去成本及所有費用之差為正值)
(Ⅲ)該超市經(jīng)營多少年,其年平均獲利最大?最大值是多少?(年平均獲利)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】將方格表的每個方格任意填入或,然后允許進行如下操作:每次任意選擇一行(或列),將這一行(或列)中的數(shù)全部變號.若無論開始時方格表的數(shù)怎樣填,總能經(jīng)過不超過次操作,使得方格表每一行中所有數(shù)的和、每一列中所有數(shù)的和均非負.試確定的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),,給出如下四個命題:
①的單調(diào)遞增區(qū)間為;
②時,的極小值點為;
③時,在上存在唯一零點;
④若在(為自然對數(shù)的底數(shù))上的最小值為3,則.
其中的真命題有______.(填上你認為所有正確的結(jié)論序號
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C的中心為坐標原點O,焦點在y軸上,離心率,橢圓上的點到焦點的最短距離為, 直線l與y軸交于點P(0,m),與橢圓C交于相異兩點A、B,且.
(1)求橢圓方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,,且.
(1)過作截面與線段交于點H,使得平面,試確定點H的位置,并給出證明;
(2)在(1)的條件下,若二面角的大小為,試求直線與平面所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com