如圖:在三棱錐D-ABC中,已知是正三角形,AB平面BCD,,E為BC的中點,F(xiàn)在棱AC上,且

(1)求三棱錐DABC的表面積;
(2)求證AC⊥平面DEF;
(3)若MBD的中點,問AC上是否存在一點N,使MN∥平面DEF?若存在,說明點N的位置;若不存在,試說明理由.

(1)
(2)先證EFAC,再證DE⊥AC,即可證AC⊥平面DEF
(3)存在這樣的點N,當CN時,MN∥平面DEF

解析試題分析:

解:(1)∵AB⊥平面BCD,∴AB⊥BC,AB⊥BD.∵△BCD是正三角形,且AB=BC=a,∴AD=AC= a.設G為CD的中點,則CG= a,AG=a.∴SABC=SABD=a2,SBCD=a2,SACD=a2.三棱錐D-ABC的表面積為SACD=
(2)取AC的中點H,∵AB=BC,∴BH⊥AC.∵AF=3FC,∴F為CH的中點.∵E為BC的中點,∴EF∥BH.則EF⊥AC.∵△BCD是正三角形,∴DE⊥BC.∵AB⊥平面BCD,∴AB⊥DE.∵AB∩BC=B,∴DE⊥平面ABC.∴DE⊥AC.∵DE∩EF=E,∴AC⊥平面DEF.
(3)存在這樣的點N,當CN=CA時,MN∥平面DEF.連CM,設CM∩DE=O,連OF.由條件知,O為△BCD的重心,CO=CM.∴當CF=CN時,MN∥OF.∴CN=•CA=CA.
考點:棱錐的結構特征
點評:本題考查棱錐的結構特征,證明線面垂直,線面平行,考查邏輯思維能力,是中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知直三棱柱的三視圖如圖所示,的中點.

(Ⅰ)求證:∥平面;
(Ⅱ)求二面角的余弦值;
(Ⅲ)試問線段上是否存在點,使 角?若存在,確定點位置,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

邊長為2的正方形ABCD所在平面外有一點P,平面ABCD,,E是PC上的一點.
 
(Ⅰ)求證:AB//平面;
(Ⅱ)求證:平面平面
(Ⅲ)線段為多長時,平面?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在正方體中,的中點.

(1)求證:平面;
(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐P-ABCD中,底面ABCD是平行四邊形,∠ACB=90°,平面PAD⊥平面ABCD,
PA=BC=1,PD=AB=,E、F分別為線段PDBC的中點.

(Ⅰ) 求證:CE∥平面PAF;
(Ⅱ)在線段BC上是否存在一點G,使得平面PAG和平面PGC所成二面角的大小為60°?若存在,試確定G的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題


AB為圓O的直徑,點E、F在圓上,AB//EF,矩形ABCD所在平面與圓O所在平面互相垂直,已知AB=2,BC=EF=1。

(I)求證:BF⊥平面DAF;
(II)求ABCD與平面CDEF所成銳二面角的某三角函數(shù)值;
(III)求多面體ABCDFE的體積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,為圓的直徑,點在圓上,矩形所在的平面和圓所在的平面互相垂直,且.

(Ⅰ)求證:平面;
(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,四面體ABCD中,AB⊥BD、AC⊥CD且AD =3.BD=CD=2.

(1)求證:AD⊥BC;
(2)求二面角B—AC—D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在梯形△ABCD中,AB//CD,AD=DC-=CB=1,ABC=60。,四邊形ACFE為矩形,平面ACFE上平面ABCD,CF=1.

(1)求證:BC⊥平面ACFE;  
(2)若M為線段EF的中點,設平面MAB與平面FCB所成角為,求

查看答案和解析>>

同步練習冊答案