【題目】已知函數(shù)處的切線方程為

1)求的值;

2)記,求函數(shù)上的最小值;

3)若對任意的,恒有,求的取值范圍.

【答案】1223

【解析】

1)先求導(dǎo),根據(jù)函數(shù)處的切線方程為,有求解.

2)由(1)得到, 再利用導(dǎo)數(shù)法求其最小值.

3)先將對任意的,恒有,轉(zhuǎn)化為對任意的恒成立,令,求導(dǎo),根據(jù)(2)的結(jié)論,分當(dāng) ,兩種情況討論求解.

1)因為

所以,

因為函數(shù)處的切線方程為

所以,

解得.

2,

因為,所以

所以函數(shù)上是增函數(shù)

所以函數(shù)上的最小值;

3)因為對任意的,恒有,

所以對任意的恒成立,

,

,

由(2)知當(dāng)時,,所以上是增函數(shù).

所以成立.

當(dāng)時,則存在,使得,

當(dāng)時,,當(dāng)時,,

所以當(dāng)時,取得最小值,矛盾.

綜上:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列的首項為0,公差為a,;等差數(shù)列的首項為0,公差為b,.由數(shù)列構(gòu)造數(shù)表M,與數(shù)表

記數(shù)表M中位于第i行第j列的元素為,其中,(i,j=1,2,3,…).

記數(shù)表中位于第i行第j列的元素為,其中,.如:.

1)設(shè),,請計算,,;

2)設(shè),試求的表達(dá)式(用i,j表示),并證明:對于整數(shù)t,若t不屬于數(shù)表M,則t屬于數(shù)表;

3)設(shè),對于整數(shù)tt不屬于數(shù)表M,求t的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,焦距為.斜率為k的直線l與橢圓M有兩個不同的交點AB.

)求橢圓M的方程;

)若,求 的最大值;

)設(shè),直線PA與橢圓M的另一個交點為C,直線PB與橢圓M的另一個交點為D.C,D和點 共線,求k.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】今年是新中國成立70周年.70年來,在中國共產(chǎn)黨的堅強領(lǐng)導(dǎo)下,全國各族人民團(tuán)結(jié)心,迎難而上,開拓進(jìn)取,奮力前行,創(chuàng)造了一個又一個人類發(fā)展史上的偉大奇跡,中華民族迎來了從站起來、富起來到強起來的偉大飛躍.某公司統(tǒng)計了第年(2013年是第一年)的經(jīng)濟效益為(千萬元),得到如下表格:

3

4

5

6

2.5

3

4

4.5

若由表中數(shù)據(jù)得到關(guān)于的線性回歸方程是,則可預(yù)測2020年經(jīng)濟效益大約是(

A.5.95千萬元B.5.25千萬元C.5.2千萬元D.5千萬元

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲和乙兩個人計劃周末參加志愿者活動,約定在周日早上8:008:30之間到某公交站搭乘公交車一起去,已知在這段時間內(nèi),共有班公交車到達(dá)該站,到站的時間分別為8:05,8:15,8:30,如果他們約定見車就搭乘,則甲和乙兩個人恰好能搭乘同一班公交車去的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xOy中,已知拋物線Cy22pxp0)的焦點為F,過F垂直于x軸的直線與C相交于A、B兩點,△AOB的面積為2

1)求拋物線C的方程;

2)若過P0)的直線與C相交于M,N兩點,且2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】冬天的北方室外溫度極低,若輕薄保暖的石墨烯發(fā)熱膜能用在衣服上,可愛的醫(yī)務(wù)工作者行動會更方便.石墨烯發(fā)熱膜的制作:從石墨中分離出石墨烯,制成石墨烯發(fā)熱膜.從石墨分離石墨烯的一種方法是化學(xué)氣相沉積法,使石墨升華后附著在材料上再結(jié)晶.現(xiàn)在有材料、材料供選擇,研究人員對附著在材料、材料上再結(jié)晶各做了50次試驗,得到如下等高條形圖.

1)根據(jù)上面的等高條形圖,填寫如下列聯(lián)表,判斷是否有99%的把握認(rèn)為試驗成功與材料有關(guān)?

材料

材料

合計

成功

不成功

合計

2)研究人員得到石墨烯后,再制作石墨烯發(fā)熱膜有三個環(huán)節(jié):①透明基底及膠層;②石墨烯層;③表面封裝層.第一、二環(huán)節(jié)生產(chǎn)合格的概率均為,第三個環(huán)節(jié)生產(chǎn)合格的概率為,且各生產(chǎn)環(huán)節(jié)相互獨立.已知生產(chǎn)1噸的石墨烯發(fā)熱膜的固定成本為1萬元,若生產(chǎn)不合格還需進(jìn)行修復(fù),第三個環(huán)節(jié)的修復(fù)費用為3000元,其余環(huán)節(jié)修復(fù)費用均為1000.如何定價,才能實現(xiàn)每生產(chǎn)1噸石墨烯發(fā)熱膜獲利可達(dá)1萬元以上的目標(biāo)?

附:參考公式:,其中.

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)選修44,坐標(biāo)系與參數(shù)方程

已知曲線,直線為參數(shù)).

I)寫出曲線的參數(shù)方程,直線的普通方程;

II)過曲線上任意一點作與夾角為的直線,交于點,的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是橢圓的左右頂點,點為橢圓上一點,點關(guān)于軸的對稱點為,且.

1)若橢圓經(jīng)過圓的圓心,求橢圓的方程;

2)在(1)的條件下,若過點的直線與橢圓相交于不同的兩點,設(shè)為橢圓上一點,且滿足為坐標(biāo)原點),當(dāng)時,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案