【題目】二次函數(shù)在區(qū)間上有最大值4,最小值0.

1)求函數(shù)的解析式;

2)設(shè),若時(shí)恒成立,求的范圍.

【答案】1gx)=x22x+1;(2[33,+∞

【解析】

1)根據(jù)二次函數(shù)的性質(zhì)討論對(duì)稱(chēng)軸,即可求解最值,可得解析式.

2)求解fx)的解析式,fx)﹣kx≤0x[,8],分離參數(shù)即可求解.

1gx)=mx22mx+n+1m0

其對(duì)稱(chēng)軸x1x[0,3]上,

∴當(dāng)x1時(shí),fx)取得最小值為﹣m+n+10,①.

當(dāng)x3時(shí),fx)取得最大值為3m+n+14,②.

由①②解得:m1,n0

故得函數(shù)gx)的解析式為:gx)=x22x+1

2)由fx

當(dāng)x[,8]時(shí),fx)﹣kx≤0恒成立,

x24x+1kx2≤0恒成立,

x24x+1≤kx2

k

設(shè),則t[,8]

可得:14t+t2=(t223≤k

當(dāng)t8時(shí),(14t+t2max33

故得k的取值范圍是[33,+∞

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知曲線的極坐標(biāo)方程是,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為軸的正半軸,建立平面直角坐標(biāo)系,直線的參數(shù)方程是 (為參數(shù)).

(1)將曲線的極坐標(biāo)方程化為直角坐標(biāo)方程;

(2)若直線與曲線相交于兩點(diǎn),且,求直線的傾斜角的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】雙曲線的左、右焦點(diǎn)分別為、,直線過(guò)且與雙曲線交于、兩點(diǎn).

1)若的傾斜角為,,是等腰直角三角形,求雙曲線的標(biāo)準(zhǔn)方程;

2,,若的斜率存在,且,求的斜率;

3)證明:點(diǎn)到已知雙曲線的兩條漸近線的距離的乘積為定值是該點(diǎn)在已知雙曲線上的必要非充分條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)求函數(shù)的單調(diào)遞增區(qū)間;

(2)內(nèi)角的對(duì)邊分別為,若,,且,試求角和角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)角度看,可以看成是以為自變量的函數(shù),其定義域是.

1)證明:

2)試?yán)?/span>1的結(jié)論來(lái)證明:當(dāng)為偶數(shù)時(shí),的展開(kāi)式最中間一項(xiàng)的二項(xiàng)式系數(shù)最大;當(dāng)為奇數(shù)時(shí)的展開(kāi)式最中間兩項(xiàng)的二項(xiàng)式系數(shù)相等且最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,其左、右焦點(diǎn)分別為,點(diǎn)是坐標(biāo)平面內(nèi)一點(diǎn),且, 為坐標(biāo)原點(diǎn)).

(1)求橢圓的方程;

(2)過(guò)點(diǎn)且斜率為的動(dòng)直線交橢圓于兩點(diǎn),在軸上是否存在定點(diǎn),使以為直徑的圓恒過(guò)該點(diǎn)?若存在,求出點(diǎn)的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù))是定義在上的奇函數(shù).

(1)求的值;

(2)求函數(shù)的值域;

(3)當(dāng)時(shí), 恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,

(1)設(shè)相交于點(diǎn),,且平面,求實(shí)數(shù)的值;

(2)若, 求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知方程上有兩個(gè)不等的實(shí)數(shù)根,則實(shí)數(shù)的取值范圍為( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案