【題目】設(shè)命題p:方程x2+(2m-4)x+m=0有兩個(gè)不等的實(shí)數(shù)根:命題q:x∈[2,3],不等式x2-4x+13≥m2恒成立.
(1)若命題p為真命題,則實(shí)數(shù)m的取值范圍;
(2)若命題p∨q為真命題,命題p∧q為假命題,求實(shí)數(shù)m的取值范圍.
【答案】(1)m>4或m<1;(2)m<-3或1≤m≤3或m>4
【解析】
(1)根據(jù)一元二次方程根與判別式△的關(guān)系求出m的范圍即可.
(2)求出命題p,q為真命題的等價(jià)條件,結(jié)合復(fù)合命題真假關(guān)系進(jìn)行求解即可.
(1)若命題p為真命題,則判別式△=(2m-4)2-4m=4(m-1)(m-4)>0,
解得m>4或m<1.
(2)若命題q為真命題,則(x-2)2≥m2-9在[2,3]恒成立.
∵當(dāng)x=2時(shí),(x-2)2取得最小值0,
則0≥m2-9,即m2≤3,解得.
“若命題p∨q為真命題,命題p∧q為假命題,所以命題p,q中一真一假,
當(dāng)p真且q假時(shí),,得m<-3或m>4,
當(dāng)p假且q真時(shí),,解得1≤m≤3.
綜上所述:m<-3或1≤m≤3或m>4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
(1)函數(shù)的圖象關(guān)于點(diǎn)對稱;
(2)函數(shù)在區(qū)間內(nèi)是增函數(shù);
(3)函數(shù)是偶函數(shù);
(4)存在實(shí)數(shù),使;
(5)如果函數(shù)的圖象關(guān)于點(diǎn)中心對稱,那么的最小值為.
其中正確的命題的序號是___________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】樹立和踐行“綠水青山就是金山銀山,堅(jiān)持人與自然和諧共生”的理念越來越深入人心,已形成了全民自覺參與,造福百姓的良性循環(huán).據(jù)此,某網(wǎng)站退出了關(guān)于生態(tài)文明建設(shè)進(jìn)展情況的調(diào)查,調(diào)查數(shù)據(jù)表明,環(huán)境治理和保護(hù)問題仍是百姓最為關(guān)心的熱點(diǎn),參與調(diào)查者中關(guān)注此問題的約占.現(xiàn)從參與關(guān)注生態(tài)文明建設(shè)的人群中隨機(jī)選出200人,并將這200人按年齡分組:第1組,第2組,第3組,第4組,第5組,得到的頻率分布直方圖如圖所示.
(1)求出的值;
(2)求這200人年齡的樣本平均數(shù)(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值作代表)和中位數(shù)(精確到小數(shù)點(diǎn)后一位);
(3)現(xiàn)在要從年齡較小的第1,2組中用分層抽樣的方法抽取5人,再從這5人中隨機(jī)抽取3人進(jìn)行問卷調(diào)查,求這2組恰好抽到2人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,E是PC的中點(diǎn),底面ABCD為矩形,AB=4,AD=2,PA=PD,且平面PAD⊥平面ABCD,平面ABE與棱PD交于點(diǎn)F.
(1)求證:EF∥平面PAB;
(2)若PB與平面ABCD所成角的正弦值為,求二面角P-AE-B的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,多面體, , ,且兩兩垂直.給出下列四個(gè)命題:
①三棱錐的體積為定值;
②經(jīng)過四點(diǎn)的球的直徑為;
③直線∥平面;
④直線所成的角為;
其中真命題的個(gè)數(shù)是(。
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+.
(1)若關(guān)于x的不等式f(3x)≤m3x+2在[-2,2]上恒成立.求實(shí)數(shù)m的取值范圍;
(2)若函數(shù)g(x)=f(|2x-1|)-3t-2有四個(gè)不同的零點(diǎn),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】試用恰當(dāng)?shù)姆椒ū硎鞠铝屑?/span>.
(1)使函數(shù)有意義的x的集合;
(2)不大于12的非負(fù)偶數(shù);
(3)滿足不等式的解集;
(4)由大于10小于20的所有整數(shù)組成的集合.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了加強(qiáng)中學(xué)生實(shí)踐、創(chuàng)新和團(tuán)隊(duì)建設(shè)能力的培養(yǎng),促進(jìn)教育教學(xué)改革,市教育局舉辦了全市中學(xué)生創(chuàng)新知識競賽,某中學(xué)舉行了選拔賽,共有150名學(xué)生參加,為了了解成績情況,從中抽取50名學(xué)生的成績(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì),請你根據(jù)尚未完成的頻率分布表,解答下列問題:
(1)完成頻率分布表(直接寫出結(jié)果);
(2)若成績在90.5分以上的學(xué)生獲一等獎,試估計(jì)全校獲一等獎的人數(shù),現(xiàn)在從全校所有獲一等獎的同學(xué)中隨機(jī)抽取2名同學(xué)代表學(xué)校參加競賽,某班共有2名同學(xué)榮獲一等獎,求該班同學(xué)恰有1人參加競賽的概率.
分組 | 頻數(shù) | 頻率 | |
第1組 | [60.5,70.5) | 0.26 | |
第2組 | [70.5,80.5) | 17 | |
第3組 | [80.5,90.5) | 18 | 0.36 |
第4組 | [90.5,100.5] | ||
合計(jì) | 50 | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】黨的十八大以來,我國精準(zhǔn)扶貧已經(jīng)實(shí)施了六年,我國貧困人口從2012年的9899萬人,減少到2018年的1660萬人,2019年將努力實(shí)現(xiàn)減少貧困人口1000萬人以上的目標(biāo),力爭2020年在現(xiàn)行標(biāo)準(zhǔn)下,農(nóng)村貧困人口全部脫貧,貧困縣全部脫貧摘帽.某市為深入分析該市當(dāng)前扶貧領(lǐng)域存在的突出問題,市扶貧辦近三年來,每半年對貧困戶(用表示,單位:萬戶)進(jìn)行取樣,統(tǒng)計(jì)結(jié)果如圖所示,從2016年6月底到2019年6月底的共進(jìn)行了七次統(tǒng)計(jì),統(tǒng)計(jì)時(shí)間用序號表示,例如:2016年12月底(時(shí)間序號為2)貧困戶為5.2萬戶.
(1)求關(guān)于的線性回歸方程,并預(yù)測到2020年12月底,該市能否實(shí)現(xiàn)貧困戶全部脫貧;
(2)為盡快打贏脫貧攻堅(jiān)戰(zhàn),該市扶貧辦在2019年6月底時(shí),對全市貧困戶隨機(jī)抽取了100戶貧困戶,對每個(gè)家庭最主要經(jīng)濟(jì)收入來源進(jìn)行抽樣調(diào)查,統(tǒng)計(jì)結(jié)果如圖.并決定據(jù)此選派一批農(nóng)業(yè)技術(shù)人員對全市所有貧困戶中,家庭最主要經(jīng)濟(jì)收入來源為養(yǎng)殖收入和種植收入的貧困戶進(jìn)行對口幫扶,每一名農(nóng)業(yè)技術(shù)人員對口幫扶貧困戶90戶,則該市應(yīng)分別安排多少農(nóng)業(yè)技術(shù)人員對家庭最主要經(jīng)濟(jì)收入來源為養(yǎng)殖收入和種植收入的貧困戶進(jìn)行對口幫扶?
附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:
,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com