【題目】已知橢圓的左、右焦點(diǎn)分別,設(shè)點(diǎn),=2.

(1)求橢圓C的方程;

(2)已知四邊形MNPQ的四個(gè)頂點(diǎn)均在曲線C上,且MQ∥NP,MQ⊥x軸,若直線MN和直線QP交于點(diǎn)S(4,0).判斷四邊形MNPQ兩條對(duì)角線的交點(diǎn)是否為定點(diǎn)?若是,求出定點(diǎn)坐標(biāo);若不是,請(qǐng)說明理由.

【答案】(1)(2)四邊形MNPQ兩條對(duì)角線的交點(diǎn)是定點(diǎn),且定點(diǎn)坐標(biāo)為 (1,0)

【解析】(1)由=2可得,所以,解得,

所以橢圓C的方程為.(4分)

(2)設(shè)MP與x軸交于,則直線MP的方程為

設(shè),由對(duì)稱性知,

,消去x得,(6分)

所以,,,(8分)

由M、N、S三點(diǎn)共線知,即,

所以y1(my2+t-4)+y2(my1+t-4)=0,整理得2my1y2+(t-4)(y1+y2)=0,

所以,

即24m(t-1)=0,t=1,(10分)

所以直線MP過定點(diǎn)D(1,0),同理可得直線NQ也過定點(diǎn)D(1,0),

即四邊形MNPQ兩條對(duì)角線的交點(diǎn)是定點(diǎn),且定點(diǎn)坐標(biāo)為(1,0).(12分)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|(a﹣1)x2﹣x+2=0}有且只有一個(gè)元素,則a=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某社區(qū)為豐富居民節(jié)日活動(dòng),組織了迎新春象棋大賽,已知報(bào)名的選手情況統(tǒng)計(jì)如下表:

組別

總計(jì)

中年組

91

老年組

16

已知中年組女性選手人數(shù)是僅比老年組女性選手人數(shù)多2人.若對(duì)中年組和老年組分別利用分層抽樣的方法抽取部分報(bào)名者參加比賽,已知老年組抽取了5人,其中女性3人,中年組抽取了7人.

)求表格中的數(shù)據(jù);

)若從選出的中年組的選手中隨機(jī)抽取兩名進(jìn)行比賽,求至少有一名女性選手的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,.

(1) 的單調(diào)區(qū)間;

(2) ,求滿足的實(shí)數(shù)的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中, , , 的中點(diǎn).

(1)求證: ;

(2)設(shè)平面平面, , ,求二面角的平面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在探究實(shí)系數(shù)一元二次方程的根與系數(shù)的關(guān)系時(shí),可按下述方法進(jìn)行:

設(shè)實(shí)系數(shù)一元二次方程……①

在復(fù)數(shù)集內(nèi)的根為 ,則方程①可變形為,

展開得.……②

比較①②可以得到:

類比上述方法,設(shè)實(shí)系數(shù)一元次方程)在復(fù)數(shù)集內(nèi)的根為, ,…, ,則這個(gè)根的積 __________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一企業(yè)從某條生產(chǎn)線上隨機(jī)抽取30件產(chǎn)品,測(cè)量這些產(chǎn)品的某項(xiàng)技術(shù)指標(biāo)值,得到如下的頻數(shù)分布表:

頻數(shù)

2

6

18

4

(I)估計(jì)該技術(shù)指標(biāo)值的平均數(shù)和眾數(shù)(以各組區(qū)間的中點(diǎn)值代表該組的取值);

(II) ,則該產(chǎn)品不合格,其余的是合格產(chǎn)品,從不合格的產(chǎn)品中隨機(jī)抽取2件,求抽取的2件產(chǎn)品中技術(shù)指標(biāo)值小于的產(chǎn)品恰有1件的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若某程序框圖如圖所示,當(dāng)輸入50時(shí),則該程序運(yùn)行后輸出的結(jié)果是 ( )

A. 8 B. 7 C. 6 D. 5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知奇函數(shù)
(1)在直角坐標(biāo)系中畫出y=f(x)的圖象,并指出函數(shù)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)在區(qū)間[﹣1,a﹣2]上單調(diào)遞增,試確定a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案