【題目】如下圖,從A點(diǎn)出發(fā)每次只能向上或者向右走一步,則到達(dá)B點(diǎn)的路徑的條數(shù)為________.

【答案】16

【解析】

分別求出每個(gè)點(diǎn)的路徑條數(shù),即可得出到達(dá)B點(diǎn)的路徑的條數(shù).

如下圖所示

從點(diǎn)AC,D,E,F,G的路徑都只有1

從點(diǎn)A到點(diǎn)H的路徑有2條,分別為,

從點(diǎn)A到點(diǎn)O的路徑有3條,分別為從A經(jīng)過(guò)H到點(diǎn)O2條和

從點(diǎn)A到點(diǎn)M的路徑有3條,分別是從點(diǎn)A經(jīng)過(guò)點(diǎn)H到點(diǎn)M2條和

從點(diǎn)A到點(diǎn)P的路徑有6條,分別是從點(diǎn)A經(jīng)過(guò)點(diǎn)O到點(diǎn)P3條和從點(diǎn)A經(jīng)過(guò)點(diǎn)M到點(diǎn)P3

從點(diǎn)A到點(diǎn)N的路徑有4條,分別是從點(diǎn)A經(jīng)過(guò)點(diǎn)M到點(diǎn)N的3條和從點(diǎn)A經(jīng)過(guò)點(diǎn)E到點(diǎn)N的1條

從點(diǎn)A到點(diǎn)Q的路徑有10條,分別是從點(diǎn)A經(jīng)過(guò)點(diǎn)P到點(diǎn)Q6條和從點(diǎn)A經(jīng)過(guò)點(diǎn)N到點(diǎn)Q4

從點(diǎn)A到點(diǎn)R的路徑有6條,就是從點(diǎn)A經(jīng)過(guò)點(diǎn)P到點(diǎn)R6

所以從點(diǎn)A到點(diǎn)B的路徑有16條,分別是從點(diǎn)A經(jīng)過(guò)點(diǎn)R到點(diǎn)B6條和從點(diǎn)A經(jīng)過(guò)點(diǎn)Q到點(diǎn)B10

所以到達(dá)B點(diǎn)的路徑的條數(shù)為16

故答案為:16

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知橢圓的離心率為,點(diǎn)在橢圓.

(1)求橢圓的方程;

(2)設(shè)直線(xiàn)與圓相切,與橢圓相交于兩點(diǎn),求證:是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直角梯形ABCD中,,,E為AB的中點(diǎn)沿CE折起,使點(diǎn)B到達(dá)點(diǎn)F的位置,且平面CEF與平面ADCE所成的二面角為

求證:平面平面AEF;

求直線(xiàn)DF與平面CEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=x2lnx.

(1)求f(x)的單調(diào)區(qū)間;

(2)證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體中,四邊形為正方形,,,.

(1)證明:平面平面.

(2)若平面,二面角,三棱錐的外接球的球心為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】0,12,34這五個(gè)數(shù)字組成無(wú)重復(fù)數(shù)字的自然數(shù).

(Ⅰ)在組成的三位數(shù)中,求所有偶數(shù)的個(gè)數(shù);

(Ⅱ)在組成的三位數(shù)中,如果十位上的數(shù)字比百位上的數(shù)字和個(gè)位上的數(shù)字都小,則稱(chēng)這個(gè)數(shù)為“凹數(shù)”,如301423等都是“凹數(shù)”,試求“凹數(shù)”的個(gè)數(shù);

(Ⅲ)在組成的五位數(shù)中,求恰有一個(gè)偶數(shù)數(shù)字夾在兩個(gè)奇數(shù)數(shù)字之間的自然數(shù)的個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,四棱錐的底面是矩形,側(cè)面是正三角形,,.

(1)求證:平面平面;

(2)若中點(diǎn),求二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C (a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為.直線(xiàn)yk(x-1)與橢圓C交于不同的兩點(diǎn)M,N.

(1)求橢圓C的方程;

(2)當(dāng)△AMN的面積為時(shí),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】選修4-5:不等式選講

已知函數(shù).

(1)求的值域;

(2)若存在唯一的整數(shù),使得,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案