(本小題滿分13分) 已知拋物線
與直線
相交于
兩點(diǎn).
(1)求證:以
為直徑的圓過坐標(biāo)系的原點(diǎn)
;(2)當(dāng)
的面積等于
時(shí),求
的值.
(1)見解析(2)
試題分析:(1)證明:由方程組
,消去
整理得:
,
設(shè)
,由韋達(dá)定理得:
∵
在拋物線
上,∴
.
∵
,∴OA⊥OB.
故以
為直徑的圓過坐標(biāo)系的原點(diǎn)
. ……6分
(2)解:設(shè)直線與
軸交于
,又顯然
,∴令
則
,即
(-1,0).
,
,解得
. ……13分
點(diǎn)評(píng):直線與圓錐曲線的相交問題一般是聯(lián)立方程組,設(shè)而不求,借助根的判別式及根與系數(shù)的關(guān)系進(jìn)行轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
過拋物線
的焦點(diǎn)F的直線l與拋物線在第一象限的交點(diǎn)為A,直線l與拋物線的準(zhǔn)線的交點(diǎn)為B,點(diǎn)A在拋物線的準(zhǔn)線上的射影為C,若
,
,則拋物線的方程為
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
拋物線
的準(zhǔn)線方程是( )
A.4 x + 1 = 0 | B.4 y + 1 =" 0" |
C.2 x + 1 = 0 | D.2 y + 1 =" 0" |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
拋物線
截直線
所得的弦長(zhǎng)等于
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
拋物線
的準(zhǔn)線方程是y=1,則此拋物線的標(biāo)準(zhǔn)方程為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
連接拋物線
的焦點(diǎn)
與點(diǎn)
所得的線段與拋物線交于點(diǎn)
,設(shè)點(diǎn)
為坐標(biāo)原點(diǎn),則三角形
的面積為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知點(diǎn)
在拋物線
上,則點(diǎn)
到直線
的距離和到直線
的距離之和的最小值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
經(jīng)過拋物線
的焦點(diǎn),且方向向量為
的直線
的方程是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知雙曲線
的離心率為2,有一個(gè)焦點(diǎn)與拋物線
的焦點(diǎn)重合,則
__________.
查看答案和解析>>