已知A、B、C分別為△ABC的三邊a、b、c所對(duì)的角,向量
m
=(sinA,sinB),
n
=(cosB,cosA),且
m
n
=sin2C.
(1)求角C的大。
(2)若a,c,b成等差數(shù)列,且
CA
•(
AB
-
AC
)=18,求邊c的長(zhǎng).
考點(diǎn):平面向量的綜合題
專題:三角函數(shù)的求值,平面向量及應(yīng)用
分析:先根據(jù)數(shù)量積的定義把給的條件化成三角函數(shù),再利用三角形內(nèi)角和定理結(jié)合誘導(dǎo)公式、兩角和與差公式、二倍角公式進(jìn)行化簡(jiǎn)得到關(guān)于C的方程求解;
把條件“
CA
•(
AB
-
AC
)=18”用三角形的邊角表示出來(lái)是第二問(wèn)的關(guān)鍵,然后利用余弦定理求出c的值.
解答: 解  (Ⅰ)由已知得
m
n
=sinAcosB+cosAsinB=sin(A+B),
又∵在△ABC中,A+B+C=π,∴A+B=π-C,
∴sin(A+B)=sin(π-C)=sinC,又∵
m
n
=sin2C,
∴sinC=sin2C=2sinCcosC,
∴cosC=
1
2
,又0<C<π,
∴C=
π
3

(Ⅱ)由a,c,b成等差數(shù)列,2c=a+b,
CA
•(
AB
-
AC
)=18
,∴
CA
CB
=18
,即abcosC=18,
由(Ⅰ)知cosC=
1
2
,所以ab=36,
由余弦弦定理得c2=a2+b2-2abcosC=(a+b)2-3ab,
∴c2=4c2-3×36,
∴c=6
點(diǎn)評(píng):向量與三角函數(shù)的綜合,向量是工具,是手段,考查的落腳點(diǎn)是三角函數(shù)的變換公式、圖象與性質(zhì),三角形中的正余弦定理.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ex+alnx的定義域是D,關(guān)于函數(shù)f(x)給出下列命題:
①對(duì)于任意a∈(0,+∞),函數(shù)f(x)是D上的減函數(shù);
②對(duì)于任意a∈(-∞,+0),函數(shù)f(x)存在最小值;
③對(duì)于任意a∈(0,+∞),使得對(duì)于任意的x∈D,都有f(x)>0成立;
④對(duì)于任意a∈(-∞,+0),使得函數(shù)f(x)有兩個(gè)零點(diǎn).
其中正確命題的個(gè)數(shù)是( 。〣.
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)y=g(x)的導(dǎo)函數(shù)的圖象與直線y=2x平行,且y=g(x)在x=-1處取得最小值m-1(m≠0).設(shè)函數(shù)f(x)=
g(x)
x

(1)若曲線y=f(x)上的點(diǎn)P到點(diǎn)Q(0,2)的距離的最小值為
6
,求m的值
(2)k(k∈R)如何取值時(shí),函數(shù)y=f(x)-kx存在零點(diǎn),并求出零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某車站在春運(yùn)期間為了了解旅客購(gòu)票情況,隨機(jī)抽樣調(diào)查了100名旅客從開始在售票窗口排隊(duì)到購(gòu)到車票所用的時(shí)間t(以下簡(jiǎn)稱為購(gòu)票用時(shí),單位為min),如圖是這次調(diào)查統(tǒng)計(jì)分析得到的數(shù)據(jù)(如圖所示).
(Ⅰ)求出第二組的頻率并補(bǔ)全頻率分布直方圖;
(Ⅱ)根據(jù)頻率分布直方圖估計(jì)樣本數(shù)據(jù)的眾數(shù)、中位數(shù)、平均數(shù);
(Ⅲ)估計(jì)購(gòu)票用時(shí)在[10,20]分鐘的人數(shù)約為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

現(xiàn)在有6個(gè)節(jié)目準(zhǔn)備參加比賽,其中4個(gè)舞蹈節(jié)目,2個(gè)語(yǔ)言類節(jié)目,如果不放回地依次抽取2個(gè)節(jié)目,求:
(1)第1次抽到舞蹈節(jié)目的概率;
(2)第1次和第2次都抽到舞蹈節(jié)目的概率;
(3)在第1次抽到舞蹈節(jié)目的條件下,第二次抽到舞蹈節(jié)目的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知θ是第三象限角,且sinθ=-
4
5

(1)求cos2θ的值;
(2)求tan(
π
4
-θ)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某種產(chǎn)品有一等品、二等品、次品三個(gè)等級(jí),其中一等品和二等品都是正品.現(xiàn)有6件該產(chǎn)品,從中隨機(jī)抽取2件來(lái)進(jìn)行檢測(cè).
(1)若6件產(chǎn)品中有一等品3件、二等品2件、次品1件.
①抽檢的2件產(chǎn)品全是一等品的概率是多少?
②抽檢的2件產(chǎn)品中恰有1件是二等品的概率是多少?
(2)如果抽檢的2件產(chǎn)品中至多有1件是次品的概率不小于
4
5
,則6件產(chǎn)品中次品最多有多少件?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log2(x+1),g(x)=log2(4-2x).    
(1)求f(x)-g(x)的定義域;
(2)求使f(x)-g(x)>0的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

觀察下題的解答過(guò)程:
已知正實(shí)數(shù)a,b滿足a+b=1,求
2a+1
+
2b+1
的最大值
解:∵
2a+1
2
2a+1
2
+
2
2
2
=a+
3
2
,
2b+1
2
2b+1
2
+
2
2
2
=b+
3
2

相加得
2a+1
2
+
2b+1
2
=
2
2a+1
+
2b+1
)≤a+b+3=4∴
2b+1
+
2b+1
≤2
2
,等號(hào)在a=b=
1
2
時(shí)取得,即
2a+1
+
2b+1
的最大值為2
2

請(qǐng)類比上題解法,使用綜合法證明下題:
已知正實(shí)數(shù)x,y,z滿足x+y+z=2,求證:
2x+1
+
2y+1
+
2z+1
21

查看答案和解析>>

同步練習(xí)冊(cè)答案