函數(shù)f(x)=1-2sin2(x+
π
4
),則f(
π
6
)=
 
考點(diǎn):二倍角的余弦,三角函數(shù)的化簡(jiǎn)求值
專題:三角函數(shù)的求值
分析:直接利用二倍角公式化簡(jiǎn)已知條件,然后求解函數(shù)值即可.
解答: 解:函數(shù)f(x)=1-2sin2(x+
π
4
)=cos(2x+
π
2
)=-sin2x,
則f(
π
6
)=-sin(
π
6
)=-sin
π
3
=-
3
2

故答案為:-
3
2
點(diǎn)評(píng):本題考查二倍角公式的應(yīng)用,三角函數(shù)的化簡(jiǎn)求值,基本知識(shí)的考查.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P(-3,5)關(guān)于直線l:2x-y+1=0對(duì)稱的點(diǎn)的坐標(biāo)
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知函數(shù)f(x)=sin2xcosx+2sin2x
cosx
sin(x+
2
)
)-sin(x+2014π).求f(
3
4
π)  
(2)設(shè)cos(x+
π
4
)=-
4
5
,
11π
12
<x<
4
,求f(x)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合M={x|x2+2x-15<0},N={x|x2+6x-7≥0},則M∩N=(  )
A、(-5,1]
B、[1,3)
C、[-7,3)
D、(-5,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x2-3x-10<0},B={x|m+1≤x≤2m-1}.
(1)當(dāng)m=3時(shí),求集合A∩B(∁RA)∩B;
(2)若A∩B=B,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

22015除以9的余數(shù)是(  )
A、1B、2C、5D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公司試銷 一種新產(chǎn)品,規(guī)定試銷時(shí)銷售單 價(jià)不低于成本單價(jià)500元/件,又不高于800元/件,經(jīng)試銷調(diào)查,發(fā)現(xiàn)銷售量y(件)與銷售單價(jià)x(元/件),可近似看做一次函數(shù)y=kx+b的關(guān)系(圖象如圖所示). 
(1)根據(jù)圖象,求一次函數(shù)y=kx+b的表達(dá)式; 
(2)設(shè)公司獲得的毛利潤(rùn)(毛利潤(rùn)=銷售 總價(jià)-成本總價(jià))為S元,①求S關(guān)于x的函數(shù)表達(dá)式; ②求該公司可獲得的最大毛利潤(rùn),并求出 此時(shí)相應(yīng)的銷售單價(jià).x=600y=600.x=700y=450.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

動(dòng)物園要圍成面積相同的長(zhǎng)方形虎籠四間,一面可利用原有的墻,其它各面用鋼筋網(wǎng)圍成.
(1)現(xiàn)有可圍36m長(zhǎng)的鋼筋網(wǎng)的材料,每間虎籠的長(zhǎng)、寬各設(shè)計(jì)為多少時(shí),可使每間虎籠的面積最大?
(2)若使每間虎籠的面積為20m2,則每間虎籠的長(zhǎng)、寬各設(shè)計(jì)為多少時(shí),可使圍成四間虎籠的鋼筋網(wǎng)總長(zhǎng)最小?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若點(diǎn)A的坐標(biāo)為(3,2),F(xiàn)為拋物線的焦點(diǎn),點(diǎn)P是拋物線y2=2x上一動(dòng)點(diǎn),求|PA|+|PF|的最小值并求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案