【題目】已如橢圓E:()的離心率為,點(diǎn)在E上.
(1)求E的方程:
(2)斜率不為0的直線l經(jīng)過點(diǎn),且與E交于P,Q兩點(diǎn),試問:是否存在定點(diǎn)C,使得?若存在,求C的坐標(biāo):若不存在,請說明理由
【答案】(1)(2)存在x軸上的定點(diǎn),使得
【解析】
(1)根據(jù)橢圓離心率和過的點(diǎn),得到關(guān)于,的方程組,解得,的值,從而得到橢圓的方程;(2)設(shè)存在定點(diǎn),對稱性可知設(shè),根據(jù),得到,即得,直線的方程為:與橢圓聯(lián)立,得到,,從而得到和的關(guān)系式,根據(jù)對恒成立,從而得到的值.
(1)因?yàn)闄E圓E的離心率,所以①,
點(diǎn)在橢圓上,所以②,
由①②解得,.
故E的方程為.
(2)假設(shè)存在定點(diǎn),使得.
由對稱性可知,點(diǎn)必在軸上,故可設(shè).
因?yàn)?/span>,所以直線與直線的傾斜角互補(bǔ),因此.
設(shè)直線的方程為:,,
由消去,得,
,所以,
所以,,
因?yàn)?/span>,所以,
所以,即.
整理得,
所以,即.
所以,即,對恒成立,
即對恒成立,所以.
所以存在定點(diǎn),使得.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代數(shù)學(xué)名著,它在幾何學(xué)中的研究比西方早1000多年,在《九章算術(shù)》中,將底面為直角三角形,且側(cè)棱垂直于底面的三棱柱稱為塹堵(qian du);陽馬指底面為矩形,一側(cè)棱垂直于底面的四棱錐,鱉膈(bie nao)指四個(gè)面均為直角三角形的四面體.如圖在塹堵中,.
(1)求證:四棱錐為陽馬;
(2)若,當(dāng)鱉膈體積最大時(shí),求銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若為單調(diào)函數(shù),求a的取值范圍;
(2)若函數(shù)僅一個(gè)零點(diǎn),求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,焦距為,與拋物線有公共焦點(diǎn).
(1)求橢圓C1與拋物線的方程;
(2)已知直線是圓的一條切線,與橢圓C1交于兩點(diǎn),若直線斜率存在且不為,在橢圓C1上存在點(diǎn),使,其中為坐標(biāo)原點(diǎn),求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年電商“雙十一”大戰(zhàn)即將開始.某電商為了盡快占領(lǐng)市場,搶占今年“雙十一”的先機(jī),對成都地區(qū)年齡在15到75歲的人群“是否網(wǎng)上購物”的情況進(jìn)行了調(diào)查,隨機(jī)抽取了100人,其年齡頻率分布表和使用網(wǎng)上購物的人數(shù)如下所示:(年齡單位:歲)
年齡段 | ||||||
頻率 | 0.1 | 0.32 | 0.28 | 0.22 | 0.05 | 0.03 |
購物人數(shù) | 8 | 28 | 24 | 12 | 2 | 1 |
(1)若以45歲為分界點(diǎn),根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為“網(wǎng)上購物”與年齡有關(guān)?
年齡低于45歲 | 年齡不低于45歲 | 總計(jì) | |
使用網(wǎng)上購物 | |||
不使用網(wǎng)上購物 | |||
總計(jì) |
(2)若從年齡在的樣本中隨機(jī)選取2人進(jìn)行座談,求選中的2人中恰好有1人“使用網(wǎng)上購物”的概率.
參考數(shù)據(jù):
0.025 | 0.010 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)滿足:①定義為;②.
(1)求的解析式;
(2)若;均有成立,求的取值范圍;
(3)設(shè),試求方程的解.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,傾斜角為的直線的參數(shù)方程為(為參數(shù)).在以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸的極坐標(biāo)系中,曲線的極坐標(biāo)方程為.
(1)求直線的普通方程與曲線的直角坐標(biāo)方程;
(2)若直線與曲線交于,兩點(diǎn),且,求直線的傾斜角.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若關(guān)于x的方程(e為自然對數(shù)的底數(shù))有且僅有6個(gè)不等的實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com