【題目】已知等差數(shù)列{an}的各項(xiàng)均為正數(shù),其公差為2,a2a4=4a3+1.

(1)求{an}的通項(xiàng)公式;

(2)求.

【答案】(1)an=2n-1; (2)3n+1-n-2.

【解析】

(1)由公差為2,a2a4=4a3+1列方程即可求出,再利用等差數(shù)列{an}的通項(xiàng)公式求解。

(2)利用分組求和方法求和即可。

(1)依題意知,an=a1+2(n-1),an>0.

因?yàn)閍2a4=4a3+1,所以(a1+2)(a1+6)=4(a1+4)+1,

所以a+4a1-5=0,解得a1=1或a1=-5(舍去),

所以an=2n-1.

(2)

=(2×1-1)+(2×3-1)+(2×32-1)+…+(2×3n-1)

=2×(1+3+32+…+3n)-(n+1)

=2×-(n+1)=3n+1-n-2.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)當(dāng)時(shí),求函數(shù)的值域;

(2)如果對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于函數(shù),若存在區(qū)間,使得,則稱函數(shù)可等域函數(shù)”.區(qū)間為函數(shù)的一個(gè)可等域區(qū)間”.給出下列三個(gè)函數(shù):

;②;③

則其中存在唯一可等域區(qū)間可等域函數(shù)的個(gè)數(shù)是(  

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)圓的圓心為A,直線過(guò)點(diǎn)B(1,0)且與x軸不重合,設(shè)P為圓A上一點(diǎn),線段PB的垂直平分線交直線PA于E

(1)證明為定值,并寫(xiě)出E的軌跡方程;

(2)設(shè)點(diǎn)M的軌跡為曲線C1,直線C1M,N兩點(diǎn),問(wèn):在軸上是否存在定點(diǎn)D使直線DM與DN的傾斜角互補(bǔ),若存在求出D點(diǎn)的坐標(biāo),否則說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校100名學(xué)生期中考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖.

(1)求圖中的值;

(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生期中考試數(shù)學(xué)成績(jī)的平均分;

(3)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機(jī)抽取6名學(xué)生,將該樣本看成一個(gè)總體,從中隨機(jī)抽取2名,求其中恰有1人的分?jǐn)?shù)不低于90分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】H大橋”是某市的交通要道,提高過(guò)橋車輛的通行能力可改善整個(gè)城市的交通狀況.研究表明:在一般情況下,大橋上的車流速度(單位:千米/小時(shí))是車流密度(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200/千米時(shí),造成堵塞,此時(shí)車流速度為;當(dāng)車流密度不超過(guò)20/千米時(shí),車流速度為60千米/小時(shí);當(dāng)時(shí),車流速度是車流密度的一次函數(shù).

1)當(dāng)時(shí),求函數(shù)的表達(dá)式.

2)設(shè)車流量,求當(dāng)車流密度為多少時(shí),車流量最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中, 為邊長(zhǎng)為2的等邊三角形,平面平面四邊形為菱形, , 相交于點(diǎn).

1)求證: ;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知的圖像過(guò)點(diǎn),且在點(diǎn)處的切線方程為.

1)求的解析式;

2)求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】小張?jiān)谔詫毦W(wǎng)上開(kāi)一家商店,他以10元每條的價(jià)格購(gòu)進(jìn)某品牌積壓圍巾2000條.定價(jià)前,小張先搜索了淘寶網(wǎng)上的其它網(wǎng)店,發(fā)現(xiàn):商店以30元每條的價(jià)格銷售,平均每日銷售量為10條;商店以25元每條的價(jià)格銷售,平均每日銷售量為20條.假定這種圍巾的銷售量(條)是售價(jià)(元)的一次函數(shù),且各個(gè)商店間的售價(jià)、銷售量等方面不會(huì)互相影響.

(1)試寫(xiě)出圍巾銷售每日的毛利潤(rùn)(元)關(guān)于售價(jià)(元)的函數(shù)關(guān)系式(不必寫(xiě)出定義域),并幫助小張定價(jià),使得每日的毛利潤(rùn)最高(每日的毛利潤(rùn)為每日賣出商品的進(jìn)貨價(jià)與銷售價(jià)之間的差價(jià));

(2)考慮到這批圍巾的管理、倉(cāng)儲(chǔ)等費(fèi)用為200元/天(只要圍巾沒(méi)有售完,均須支付200元/天,管理、倉(cāng)儲(chǔ)等費(fèi)用與圍巾數(shù)量無(wú)關(guān)),試問(wèn)小張應(yīng)該如何定價(jià),使這批圍巾的總利潤(rùn)最高(總利潤(rùn)=總毛利潤(rùn)-總管理、倉(cāng)儲(chǔ)等費(fèi)用)?

查看答案和解析>>

同步練習(xí)冊(cè)答案