【題目】已知函數(shù)f(x)=x2-mlnx,h(x)=x2-x+a.
(1)當(dāng)a=0時(shí),f(x)≥h(x)在(1,+∞)上恒成立,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=2時(shí),若函數(shù)k(x)=f(x)-h(x)在區(qū)間(1,3)上恰有兩個(gè)不同零點(diǎn),求實(shí)數(shù)a的取值范圍.
【答案】(1) (2)
【解析】試題分析:(1) 可將問題轉(zhuǎn)化為時(shí), 恒成立問題。令,先求導(dǎo),導(dǎo)數(shù)大于0得原函數(shù)的增區(qū)間,導(dǎo)數(shù)小于0得原函數(shù)的減區(qū)間,根據(jù)單調(diào)性可求最小值。只需即可。(2)可將問題轉(zhuǎn)化為方程,在上恰有兩個(gè)相異實(shí)根,令。同(1)一樣用導(dǎo)數(shù)求函數(shù)的單調(diào)性然后再求其極值和端點(diǎn)處函數(shù)值。比較極值和端點(diǎn)處函數(shù)值得大小,畫函數(shù)草圖由數(shù)形結(jié)合分析可知直線應(yīng)與函數(shù)的圖像有2個(gè)交點(diǎn)。從而可列出關(guān)于的方程。
試題解析:
解:(1)由, 可得1分
,即,記,
則在上恒成立等價(jià)于. 3分
求得
當(dāng)時(shí), ;
當(dāng)時(shí), .
故在處取得極小值,也是最小值,即,故.
所以,實(shí)數(shù)的取值范圍為5分
(2)函數(shù)在上恰有兩個(gè)不同的零點(diǎn)
等價(jià)于方程,在上恰有兩個(gè)相異實(shí)根. 6分
令,則.
當(dāng)時(shí), ;
當(dāng)時(shí), ,
∴在上是單調(diào)遞減函數(shù),在上是單調(diào)遞增 8分
函數(shù).故,
又, ,
∵,∴只需,
故a的取值范圍是. 10分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視臺(tái)在互聯(lián)網(wǎng)上征集電視節(jié)目的現(xiàn)場(chǎng)參與觀眾,報(bào)名的共有12000人,分別來自4個(gè)地區(qū),其中甲地區(qū)2400人,乙地區(qū)4605人,丙地區(qū)3795人,丁地區(qū)1200人,主辦方計(jì)劃從中抽取60人參加現(xiàn)場(chǎng)節(jié)目,請(qǐng)?jiān)O(shè)計(jì)一套抽樣方案.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形中, 、分別是、上的點(diǎn), ,,是的中點(diǎn),現(xiàn)沿著翻折,使平面平面.
(Ⅰ)為的中點(diǎn),求證:平面.
(Ⅱ)求異面直線與所成角的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列中,,.
(1)求證:存在的一次函數(shù),使得成公比為2的等比數(shù)列;
(2)求的通項(xiàng)公式;
(3)令,求證:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】返鄉(xiāng)創(chuàng)業(yè)的大學(xué)生一直是人們比較關(guān)注的對(duì)象,他們從大學(xué)畢業(yè),沒有選擇經(jīng)濟(jì)發(fā)達(dá)的大城市,而是回到自己的家鄉(xiāng),為養(yǎng)育自己的家鄉(xiāng)貢獻(xiàn)自己的力量,在享有“國(guó)際花園城市”稱號(hào)的溫江幸福田園,就有一個(gè)由大學(xué)畢業(yè)生創(chuàng)辦的農(nóng)家院“小時(shí)代”,其獨(dú)特的裝修風(fēng)格和經(jīng)營(yíng)模式,引來無數(shù)人的關(guān)注,帶來紅紅火火的現(xiàn)狀,給青年大學(xué)生們就業(yè)創(chuàng)業(yè)上很多新的啟示.在接受采訪中,該老板談起以下情況:初期投入為72萬元,經(jīng)營(yíng)后每年的總收入為50萬元,第n年需要付出房屋維護(hù)和工人工資等費(fèi)用是首項(xiàng)為12,公差為4的等差數(shù)列(單位:萬元).
(1)求;
(2)該農(nóng)家樂第幾年開始盈利?能盈利幾年?(即總收入減去成本及所有費(fèi)用之差為正值)
(3)該農(nóng)家樂經(jīng)營(yíng)多少年,其年平均獲利最大?年平均獲利的最大值是多少?(年平均獲利前年總獲利)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖橢圓的離心率為, 其左頂點(diǎn)在圓上.
(1)求橢圓的方程;
(2)直線與橢圓的另一個(gè)交點(diǎn)為,與圓的另一個(gè)交點(diǎn)為.是否存在直線,使得? 若存在,求出直線的斜率;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)圖象上部分點(diǎn)的橫坐標(biāo)x,縱坐標(biāo)y的對(duì)應(yīng)值如下表:
x | … | -4 | -3 | -2 | -1 | 0 | 1 | … |
… | 5 | 0 | -3 | -4 | -3 | m | … |
(1)m= ;
(2)在圖中畫出這個(gè)二次函數(shù)的圖象;
(3)當(dāng)時(shí),x的取值范圍是 ;
(4)當(dāng)時(shí),y的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】農(nóng)科院的專家為了了解新培育的甲、乙兩種麥苗的長(zhǎng)勢(shì)情況,從種植有甲、乙兩種麥苗的兩塊試驗(yàn)田中各抽取6株麥苗測(cè)量株高,得到的數(shù)據(jù)如下(單位:cm):
甲:9,10,11,12,10,20;
С:8,14,13,10,12,21.
(1)選擇合適的統(tǒng)計(jì)圖表表示上述數(shù)據(jù);
(2)分別計(jì)算兩組數(shù)據(jù)的平均數(shù)與方差,并由此判斷甲、乙兩種麥苗的長(zhǎng)勢(shì)情況.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)不同身高的未成年男性的體重平均值如下表.
身高/ | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 |
體重/ | 6.13 | 7.90 | 9.99 | 12.15 | 15.02 | 17.50 | 20.92 | 26.86 | 31.11 | 38.85 | 47.25 | 55.05 |
(1)根據(jù)表格提供的數(shù)據(jù),能否建立恰當(dāng)?shù)暮瘮?shù)模型,使它能比較近似地反映這個(gè)地區(qū)未成年男性體重與身高的函數(shù)關(guān)系?試寫出這個(gè)函數(shù)模型的關(guān)系式.
(2)若體重超過相同身高男性體重平均值的1.2倍為偏胖,低于0.8倍為偏瘦,那么這個(gè)地區(qū)一名身高為,體重為的在校男生的體重是否正常?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com