【題目】某地區(qū)不同身高的未成年男性的體重平均值如下表.

身高/

60

70

80

90

100

110

120

130

140

150

160

170

體重/

6.13

7.90

9.99

12.15

15.02

17.50

20.92

26.86

31.11

38.85

47.25

55.05

1)根據(jù)表格提供的數(shù)據(jù),能否建立恰當?shù)暮瘮?shù)模型,使它能比較近似地反映這個地區(qū)未成年男性體重與身高的函數(shù)關(guān)系?試寫出這個函數(shù)模型的關(guān)系式.

2)若體重超過相同身高男性體重平均值的1.2倍為偏胖,低于0.8倍為偏瘦,那么這個地區(qū)一名身高為,體重為的在校男生的體重是否正常?

【答案】1;(2)這個男生偏胖.

【解析】

1)畫出散點圖,考慮作為函數(shù)模型,代入數(shù)據(jù)計算得到答案.

2)根據(jù)函數(shù)解析式,代入數(shù)據(jù)得到,計算得到答案.

1)以身高為橫坐標,體重為縱坐標,畫出散點圖,

根據(jù)點的分布特征,可考慮以作為刻畫這個地區(qū)未成年男性的體重與身高關(guān)系的函數(shù)模型.

取其中的兩組數(shù)據(jù),,代入得:

用計算器算得,.

這樣,我們就得到一個函數(shù)模型:.

將已知數(shù)據(jù)代入上述函數(shù)關(guān)系式,或作出上述函數(shù)的圖像,可以發(fā)現(xiàn),這個函數(shù)模型與已知數(shù)據(jù)的擬合程度較好,這說明它能較好地反映這個地區(qū)未成年男性體重與身高的關(guān)系.

2)將代入,得,由計算器算得.

由于,所以,這個男生偏胖.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)x2mlnx,h(x)x2xa.

(1)a0時,f(x)h(x)(1,+∞)上恒成立,求實數(shù)m的取值范圍;

(2)m2時,若函數(shù)k(x)f(x)h(x)在區(qū)間(1,3)上恰有兩個不同零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,ABCBCD所在平面互相垂直,且ABBCBD=2,ABCDBC=120°,E,F分別為AC,DC的中點.

(1)求證:EFBC;

(2)求二面角EBFC的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

1時,求上的單調(diào)區(qū)間;

2, 均恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,平面平面,.設,分別為,中點.

1)求證:平面

2)求證:平面;

3)試問在線段上是否存在點,使得過三點,,的平面內(nèi)的任一條直線都與平面平行?若存在,指出點的位置并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】按照《國務院關(guān)于印發(fā)十三五節(jié)能減排綜合工作方案的通知》(國發(fā)〔201674號)的要求,到2020年,全國二氧化硫排放總量要控制在1580萬噸以內(nèi),要比2015年下降15%.假設十三五期間每一年二氧化硫排放總量下降的百分比都相等,2015年后第年的二氧化硫律放總量最大值為萬噸.

1)求的解析式;

2)求2019年全國二氧化賴持放總量要控制在多少萬晚以內(nèi)(精確到1萬噸).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某理財公司有兩種理財產(chǎn)品AB,這兩種理財產(chǎn)品一年后盈虧的情況如下(每種理財產(chǎn)品的不同投資結(jié)果之間相互獨立):

產(chǎn)品A

投資結(jié)果

獲利40%

不賠不賺

虧損20%

概率

產(chǎn)品B

投資結(jié)果

獲利20%

不賠不賺

虧損10%

概率

p

q

注:p>0,q>0

(1)已知甲、乙兩人分別選擇了產(chǎn)品A和產(chǎn)品B投資,如果一年后他們中至少有一人獲利的概率大于,求實數(shù)p的取值范圍;

(2)若丙要將家中閑置的10萬元人民幣進行投資,以一年后投資收益的期望值為決策依據(jù),則選用哪種產(chǎn)品投資較理想?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線過點,其參數(shù)方程為為參數(shù),),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為

(1)寫出曲線的普通方程和曲線的直角坐標方程;

(2)已知曲線和曲線交于兩點之間),且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某商品促銷活動設計了一個摸獎游戲:在一個口袋中裝有4個紅球和6個白球,這些球除顏色外完全相同,顧客一次從中摸出3個球,若3個都是白球則無獎勵,若有1個紅球則獎勵10元購物券,若有2個紅球則獎勵20元購物券,若3個都是紅球則獎勵30元購物券.

(Ⅰ)求中獎的概率;

(Ⅱ)求顧客摸獎一次獲得購物券獎勵的平均值.

查看答案和解析>>

同步練習冊答案