精英家教網 > 高中數學 > 題目詳情
如圖, 共頂點的橢圓①,②與雙曲線③,④的離心率分別
,其大小關系為 (   )
A.B.
C.D.
C
考查離心率的幾何意義:橢圓中橢圓越圓離心率越大;
雙曲線中張口越大,離心率越大,從而選C。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題


已知橢圓C:上動點到定點,其中的距離的最小值為1.(1)請確定M點的坐標(2)試問是否存在經過M點的直線,使與橢圓C的兩個交點A、B滿足條件(O為原點),若存在,求出的方程,若不存在請說是理由。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知點,則線段AB的方程為(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題




(2)只有一個交點;(3)無交點

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

、分別是橢圓的左、右焦點.
(1)若是該橢圓上的一個動點,求·的最大值和最小值;
(2)設過定點的直線與橢圓交于不同的兩點、,且∠為銳角(其中為坐標原點),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題


A.兩條相交直線B.兩條平行直線C.橢圓D.雙曲線

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若方程(1-k)x2+(3-k2)y2=4表示橢圓,則k的取值范圍是          

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分12分)
已知A、B兩點的坐標分別是(-1,0)、(1,0),直線相交于點,且它們的斜率之積為,求點的軌跡方程并判斷軌跡形狀。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

過雙曲線的左焦點F作傾斜角為的直線與雙曲線相交于A、B兩點,若,則雙曲線的離心率為(    )
A、              B、            C、         D、2

查看答案和解析>>

同步練習冊答案