在數(shù)列{a
n}中,a
1=3,a
n+1=a
n+lg(1+
)(n∈N
*),則a
n=( )
A、lgn |
B、3+lg(++…+) |
C、3+lgn |
D、3+3lng |
考點(diǎn):數(shù)列遞推式
專題:等差數(shù)列與等比數(shù)列
分析:首先根據(jù)已知條件,利用遞推關(guān)系整理出多個(gè)關(guān)系式,觀察規(guī)律,整理出通項(xiàng)公式.
解答:
解:已知:a
n+1=a
n+lg(1+
)①
an=an-1+lg(1+) ②
…
a2=a1+lg(1+)(n)
①+②+…+(n)得:
an+1=a1+lg(2•••…)因?yàn)椋篴
1=3
所以:a
n=3+lgn
故選:C
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn):用數(shù)列的遞推關(guān)系式求通項(xiàng)公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1}.
(Ⅰ)若m=5,求(∁RA)∩B;
(Ⅱ)若B≠∅且A∪B=A,求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)銳角△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且2asinB=
b
(1)求角A的大小;
(2)若b=3,c=2,求邊a.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{an}是等比數(shù)列,若a1•a5=9,則a3=( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
下列函數(shù)為偶函數(shù)且在(0,+∞)為增函數(shù)的是( 。
A、y=-|x| |
B、y=x3 |
C、y=ex |
D、y=ln |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=
定義域?yàn)镸,集合N={x|x
2-2x=0},則M∩N=( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)對(duì)于x>0有意義,且滿足f(2)=1,f(xy)=f(x)+f(y),求f(1)與f(8)的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知數(shù)列{a
n}滿足a
1=a>0,前n項(xiàng)和為S
n,S
n=
(1+a
n).
(1)求證:{a
n}是等比數(shù)列;
(2)記b
n=a
n1n|a
n|(n∈N
*),當(dāng)a=
時(shí)是否存在正整數(shù)n,都有b
n≤bm?如果存在,求出m的值;如果不存在,請(qǐng)說明理由.
查看答案和解析>>