【題目】已知函數(shù).

1)求函數(shù)的極值;

2)若不等式恒成立,求的最小值(其中e為自然對數(shù)的底數(shù)).

【答案】1)當(dāng)時,無極值;當(dāng)時,極大值為,無極小值

2-1

【解析】

1)求出導(dǎo)函數(shù),確定函數(shù)單調(diào)性,得極值,需分類討論.

2恒成立,設(shè),求出的最大值,由得出滿足的不等關(guān)系,然后得,求得的最小值即得結(jié)論.

1)解,

當(dāng)時,恒成立,函數(shù)上單調(diào)遞增,無極值.

當(dāng)時,由,得,函數(shù)上單調(diào)遞增,由,得,

函數(shù)上單調(diào)遞減,極大值為,無極小值.

綜上所述,當(dāng)時,無極值;

當(dāng)時,極大值為,無極小值.

2)由可得

設(shè),所以,,

當(dāng)時,,上是增函數(shù),所以不可能恒成立,

當(dāng)時,由,得,

當(dāng)時,,單調(diào)遞增,當(dāng)時,,單調(diào)遞減,

所以當(dāng)時,取最大值,,

所以,即,所以,

,

當(dāng)時,,單調(diào)遞增,

當(dāng)時,,單調(diào)遞減,

所以當(dāng)時,取最小值,即,所以的最小值為-1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中,角所對的邊分別是,且.

1)求角;

2,所在平面內(nèi)一點,且滿足,求的最小值,并求取得最小值時的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】勞動教育是中國特色社會主義教育制度的重要內(nèi)容,某高中計劃組織學(xué)生參與各項職業(yè)體驗,讓學(xué)生在勞動課程中掌握一定勞動技能,理解勞動創(chuàng)造價值,培養(yǎng)勞動自立意識和主動服務(wù)他人、服務(wù)社會的情懷.學(xué)校計劃下周在高一年級開設(shè)“縫紉體驗課”,聘請“織補匠人”李阿姨給同學(xué)們傳授織補技藝。高一年級有6個班,李阿姨每周一到周五只有下午第2節(jié)課的時間可以給同學(xué)們上課,所以必須安排有兩個班合班上課,高一年級6個班“縫紉體驗課”的不同上課順序有( )

A.600B.3600C.1200D.1800

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平行四邊形ABCD中,,,,點ECD邊的中點,將沿AE折起,使點D到達點P的位置,且.

1)求證;平面平面ABCE;

2)求點E到平面PAB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】手機等數(shù)碼產(chǎn)品中的存儲器核心部件是閃存芯片,閃存芯片有兩個獨立的性能指標(biāo):數(shù)據(jù)傳輸速度和使用壽命,數(shù)據(jù)傳輸速度的單位是,使用壽命指的是完全擦寫的次數(shù)(單位:萬次).某閃存芯片制造廠為了解產(chǎn)品情況,從一批閃存芯片中隨機抽取了100件作為樣本進行性能測試,測試數(shù)據(jù)經(jīng)過整理得到如下的頻率分布直方圖(每個分組區(qū)間均為左閉右開),其中,成等差數(shù)列且.

1)估計樣本中閃存芯片的數(shù)據(jù)傳輸速度的中位數(shù).

2)估計樣本中閃存芯片的使用壽命的平均數(shù).(每組數(shù)據(jù)以中間值為代表)

3)規(guī)定數(shù)據(jù)傳輸速度不低于為優(yōu),使用壽命不低于10萬次為優(yōu),且兩項指標(biāo)均為優(yōu)的閃存芯片為級產(chǎn)品,僅有一項為優(yōu)的為級產(chǎn)品,沒有優(yōu)的為級產(chǎn)品.現(xiàn)已知樣本中有45級產(chǎn)品,用樣本中不同級別產(chǎn)品的頻率代替每件產(chǎn)品為相應(yīng)級別的概率,從這一批產(chǎn)品中任意抽取4件,求其中至少有2級產(chǎn)品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖:已知四棱錐PABCD的底面ABCD是平行四邊形,PA面ABCD,M是AD的中點,N是PC的中點.

(1)求證:MN面PAB;

(2)若平面PMC面PAD,求證:CMAD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為為參數(shù)),在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,曲線的方程為.

1)求曲線的直角坐標(biāo)方程;

2)設(shè)曲線與直線交于點,點的坐標(biāo)為(3,1),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,在矩形中,,中點,將沿折起,使點到點處,且平面平面,如圖2所示.

1)求證:

2)在棱上取點,使平面平面,求平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線在平面直角坐標(biāo)系下的參數(shù)方程為為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸,建立極坐標(biāo)系.

(1)求曲線的普通方程及極坐標(biāo)方程;

(2)直線的極坐標(biāo)方程是,射線 與曲線交于點與直線交于點,求線段的長.

查看答案和解析>>

同步練習(xí)冊答案