已知:(x,m∈R).

(1)求f(x)關(guān)于x的表達(dá)式,并求f(x)的最小正周期;

(2)若時(shí)f(x)的最小值為5,求m的值.

答案:
解析:

  解:(1)  2分

    4分

    6分

  的最小正周期是  7分

  (2)∵,∴  8分

  ∴當(dāng)時(shí),函數(shù)取得最小值是  10分

  ∵,∴  12分


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•北京)已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2.若?x∈R,f(x)<0或g(x)<0,則m的取值范圍是
(-4,0)
(-4,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一般地,如果函數(shù)f(x)的圖象關(guān)于點(diǎn)(a,b)對(duì)稱,那么對(duì)定義域內(nèi)的任意x,則f(x)+f(2a-x)=2b恒成立.已知函數(shù)f(x)=
4x
4x+m
的定義域?yàn)镽,其圖象關(guān)于點(diǎn)M(
1
2
1
2
)
對(duì)稱.
(1)求常數(shù)m的值;
(2)解方程:log2[1-f(x)]log2[4-xf(x)]=2;
(3)求證:f(
1
n
)+f(
2
n
)+…+f(
n-2
n
)+f(
n-1
n
)+f(
n
n
)=
3n+1
6
(n∈N+).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=m(x-2m)(x+m+3),g(x)=2x-2,若同時(shí)滿足條件:
①?x∈R,f(x)<0或g(x)<0;
②x∈(-∞,-4),f(x)g(x)<0.求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:天利38套《2008全國各省市高考模擬試題匯編(大綱版)》、數(shù)學(xué)理 題型:044

已知函數(shù)f(x)=(m∈R,e=2.71 828…是自然對(duì)數(shù)的底數(shù)).

(Ⅰ)當(dāng)函數(shù)f(x)的極值;

(Ⅱ)當(dāng)x>0時(shí),設(shè)f(x)的反函數(shù)為f-1(x),對(duì)0<p<q,試比較f(q-p)、f-1(q-p)及f-1(q)-f-1(p)的大小.

查看答案和解析>>

同步練習(xí)冊(cè)答案