【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,圓C的參數(shù)方程 (φ為參數(shù)),以O(shè)為極點(diǎn),x軸的非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求圓C的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程是2ρsin(θ+ )=3 ,射線OM:θ= 與圓C的交點(diǎn)為O、P,與直線l的交點(diǎn)為Q,求線段PQ的長.

【答案】
(1)解:利用cos2φ+sin2φ=1,把圓C的參數(shù)方程 為參數(shù))化為(x﹣1)2+y2=1,

∴ρ2﹣2ρcosθ=0,即ρ=2cosθ


(2)解:設(shè)(ρ1,θ1)為點(diǎn)P的極坐標(biāo),由 ,解得

設(shè)(ρ2,θ2)為點(diǎn)Q的極坐標(biāo),由 ,解得

∵θ12,∴|PQ|=|ρ1﹣ρ2|=2.

∴|PQ|=2


【解析】解:(I)利用cos2φ+sin2φ=1,即可把圓C的參數(shù)方程化為直角坐標(biāo)方程.(II)設(shè)(ρ1,θ1)為點(diǎn)P的極坐標(biāo),由 ,聯(lián)立即可解得.設(shè)(ρ2,θ2)為點(diǎn)Q的極坐標(biāo),同理可解得.利用|PQ|=|ρ1﹣ρ2|即可得出.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正四棱柱ABCD﹣A1B1C1D1中,AB=2,AA1=4.
(Ⅰ)求證:BD⊥A1C;
(Ⅱ)求二面角A﹣A1C﹣D1的余弦值;
(Ⅲ)在線段CC1上是否存在點(diǎn)P,使得平面A1CD1⊥平面PBD,若存在,求出 的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知三棱錐A﹣BCD的所有棱長都相等,若AB與平面α所成角等于 ,則平面ACD與平面α所成角的正弦值的取值范圍是(
A.[ , ]
B.[ ,1]
C.[ , + ]
D.[ ,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)
(1)設(shè)a>1,試討論f(x)單調(diào)性;
(2)設(shè)g(x)=x2﹣2bx+4,當(dāng) 時,任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且 asinA=( b﹣c)sinB+( c﹣b)sinC.
(1)求角A的大;
(2)若a= ,cosB= ,D為AC的中點(diǎn),求BD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)等比數(shù)列{an}滿足:a7=a6+2a5 , 若存在兩項(xiàng)am , an , 使得 =4a1 , 則 + 的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,取相同的長度單位,已知曲線C的極坐標(biāo)方程為ρ=2 sinθ,直線l的參數(shù)方程為 (t為參數(shù)).
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程.
(Ⅱ)若P(3, ),直線l與曲線C相交于M,N兩點(diǎn),求|PM|+|PN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知球內(nèi)接四棱錐P﹣ABCD的高為3,AC,BC相交于O,球的表面積為 ,若E為PC中點(diǎn).
(1)求證:OE∥平面PAD;
(2)求二面角A﹣BE﹣C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的右焦點(diǎn)為F(2,0),M為橢圓的上頂點(diǎn),O為坐標(biāo)原點(diǎn),且△MOF是等腰直角三角形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點(diǎn)M分別作直線MA,MB交橢圓于A,B兩點(diǎn),設(shè)兩直線的斜率分別為k1 , k2 , 且k1+k2=8,證明:直線AB過定點(diǎn)( ).

查看答案和解析>>

同步練習(xí)冊答案