已知雙曲線方程2x2-y2=2.
(1)求以A(2,1)為中點的雙曲線的弦所在的直線方程;
(2)過點(1,1)能否作直線l,使l與雙曲線交于Q1,Q2兩點,且Q1,Q2兩點的中點為(1,1)?如果存在,求出它的方程;如果不存在,說明理由.

(1);(2)直線l不存在,理由詳見解析

解析試題分析:(1)設出弦的兩端點,代入雙曲線方程,作差即可得到弦所在直線的斜率,再利用點斜式求直線方程。(2)同(1)中方法可求得弦所在直線方程,代入雙曲線,消掉y(或x)整理出關于x的一元二次方程,看判別式。若判別式大于等于0,則所求直線存在,否則不存在。
試題解析:(1)設弦的兩端點為,因為A(2,1)為中點,所以。因為在雙曲線上所以,兩式相減得,所以,所以,
所以所求弦所在直線方程為,即。
將直線方程代入雙曲線方程,整理成關于x的一元二次方程,經檢驗
(2)假設直線l存在,由(1)中方法可求得直線方程為,聯(lián)立方程,消去y得,因為,因此直線與雙曲線無交點,所以直線l不存在。
考點:點差法求直線斜率問題,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

已知點在拋物線上.
(1)若的三個頂點都在拋物線上,記三邊,,所在直線的斜率分別為,,求的值;
(2)若四邊形的四個頂點都在拋物線上,記四邊,,所在直線的斜率分別為,,,,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

給定橢圓,稱圓心在坐標原點O,半徑為的圓是橢圓C的“伴隨圓”,已知橢圓C的兩個焦點分別是.
(1)若橢圓C上一動點滿足,求橢圓C及其“伴隨圓”的方程;
(2)在(1)的條件下,過點作直線l與橢圓C只有一個交點,且截橢圓C的“伴隨圓”所得弦長為,求P點的坐標;
(3)已知,是否存在a,b,使橢圓C的“伴隨圓”上的點到過兩點的直線的最短距離.若存在,求出a,b的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓.

(1)橢圓的短軸端點分別為(如圖),直線分別與橢圓交于兩點,其中點滿足,且.
①證明直線軸交點的位置與無關;
②若∆面積是∆面積的5倍,求的值;
(2)若圓:.是過點的兩條互相垂直的直線,其中交圓、兩點,交橢圓于另一點.求面積取最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設直線與雙曲線交于A、B,且以AB為直徑的圓過原點,求點的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知拋物線的焦點為,準線為,點為拋物線C上的一點,且的外接圓圓心到準線的距離為

(I)求拋物線C的方程;
(II)若圓F的方程為,過點P作圓F的2條切線分別交軸于點,求面積的最小值時的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知橢圓 的左、右焦點分別是,是橢圓右準線上的一點,線段的垂直平分線過點.又直線按向量平移后的直線是,直線按向量平移后的直線是 (其中)。
(1) 求橢圓的離心率的取值范圍。
(2)當離心率最小且時,求橢圓的方程。
(3)若直線相交于(2)中所求得的橢圓內的一點,且與這個橢圓交于、兩點,與這個橢圓交于、兩點。求四邊形ABCD面積的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(1)已知定點、,動點N滿足(O為坐標原點),,,求點P的軌跡方程.

(2)如圖,已知橢圓的上、下頂點分別為,點在橢圓上,且異于點,直線與直線分別交于點,

(ⅰ)設直線的斜率分別為、,求證:為定值;
(ⅱ)當點運動時,以為直徑的圓是否經過定點?請證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在平面直角坐標系中,已知橢圓經過點,橢圓的離心率.

(1)求橢圓的方程;
(2)過點作兩直線與橢圓分別交于相異兩點、.若的平分線與軸平行, 試探究直線的斜率是否為定值?若是, 請給予證明;若不是, 請說明理由.

查看答案和解析>>

同步練習冊答案