已知橢圓C:的離心率為,以原點為圓心,橢圓的短半軸長為半徑的圓與直線相切。
(1)求橢圓C的方程;
(2)若過點M(2,0)的直線與橢圓C交于兩點A和B,設(shè)P為橢圓上一點,且滿足·(O為坐標(biāo)原點),當(dāng) 時,求實數(shù)t取值范圍。
(1);(2)
【解析】
試題分析:(1)利用圓心到直線的距離等于短半軸長及離心率為建立方程,解方程即可求出橢圓C的方程;(2)可以設(shè)直線:與橢圓方程聯(lián)立,得到方程,然后結(jié)合題目條件滿足·(O為坐標(biāo)原點),,利用判別式及韋達(dá)定理建立不等式,可以求出t的取值范圍.
試題解析:(Ⅰ) 由題意知,短半軸長為:, 1分
∵,∴,
即,∴, 2分
故橢圓的方程為:. 3分
(2)由題意知,直線的斜率存在,設(shè)直線:, 4分
設(shè),,,
由得,. 5分
,解得. 6分
.
∵,∴,解得,. 7分
∵點在橢圓上,∴,
∴. 8分
∵,∴,
∴,∴,
∴,∴ 10分
∴,∵,∴,
∴或,
∴實數(shù)取值范圍為. 12分
考點:(1)橢圓的標(biāo)準(zhǔn)方程;(2)向量在解析幾何在的應(yīng)用;(3)直線與圓錐曲線的問題.
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 立體幾何(解析版) 題型:選擇題
設(shè)三棱柱的側(cè)棱垂直于底面,所有棱的長都為a,頂點都在一個球面上,則該球的表面積為( )
A.πa2 B.πa2 C.πa2 D.5πa2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 數(shù)列、推理與證明(解析版) 題型:選擇題
(2013·大綱全國卷)已知數(shù)列{an}滿足3an+1+an=0,a2=-,則{an}的前10項和等于( )
A.-6(1-3-10) B.(1-3-10)
C.3(1-3-10) D.3(1+3-10)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 三角函數(shù)、解三角形與平面向量(解析版) 題型:選擇題
已知函數(shù)f(x)=x3+ax2+bx+c,下列結(jié)論中錯誤的是( )
A.?x0∈R,f(x0)=0
B.函數(shù)y=f(x)的圖象是中心對稱圖形
C.若x0是f(x)的極小值點,則f(x)在區(qū)間(-∞,x0)上單調(diào)遞減
D.若x0是f(x)的極值點,則f′(x0)=0
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)三輪沖刺模擬 三角函數(shù)、解三角形與平面向量(解析版) 題型:選擇題
函數(shù)y=ln(1-x)的定義域為( )
A.(0,1) B.[0,1) C.(0,1] D.[0,1]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年吉林省延邊州高考復(fù)習(xí)質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:填空題
已知直角△ABC中,AB=2,AC=1,D為斜邊BC的中點,則向量在上的投影為 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年吉林省延邊州高考復(fù)習(xí)質(zhì)量檢測理科數(shù)學(xué)試卷(解析版) 題型:選擇題
已知雙曲線的一個焦點與拋物線的焦點重合,且其漸近線的方程為,則該雙曲線的標(biāo)準(zhǔn)方程為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年吉林省延邊州高考復(fù)習(xí)質(zhì)量檢測文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知向量,且∥,則實數(shù)的值是 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014-2015學(xué)年河北省邯鄲市高二第一次調(diào)研數(shù)學(xué)試卷(解析版) 題型:填空題
在△ABC中,角A、B、C的對邊分別為a、b、c,若a2+c2-b2=ac,則角B的值為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com