隨機(jī)變量η的分布列如下:

η

1

2

3

4

5

6

P

0.2

x

0.35

0.1

0.15

0.2

則①x=     ;P(η>3)=     ;

P(1<η≤4)=     .

 

0、0.45、0.45

【解析】由概率分布的性質(zhì)可得:

0.2+x+0.35+0.1+0.15+0.2=1,解得:x=0.

顯然P(η>3)=P(η=4)+P(η=5)+P(η=6)

=0.1+0.15+0.2=0.45.

P(1<η≤4)=P(η=2)+P(η=3)+P(η=4)

=0+0.35+0.1=0.45.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十八選修4-4第二節(jié)練習(xí)卷(解析版) 題型:解答題

在平面直角坐標(biāo)系xOy,曲線C1的參數(shù)方程為(φ為參數(shù)),曲線C2的參數(shù)方程為(a>b>0,φ為參數(shù)),在以O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線l:θ=α與C1,C2各有一個(gè)交點(diǎn).當(dāng)α=0時(shí),這兩個(gè)交點(diǎn)間的距離為2,當(dāng)α=時(shí),這兩個(gè)交點(diǎn)重合.

(1)分別說(shuō)明C1,C2是什么曲線,并求出ab的值.

(2)設(shè)當(dāng)α=時(shí),lC1,C2的交點(diǎn)分別為A1,B1,當(dāng)α=-時(shí),lC1,C2的交點(diǎn)為A2,B2,求四邊形A1A2B2B1的面積.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十九選修4-5第一節(jié)練習(xí)卷(解析版) 題型:解答題

設(shè)f(x)=x2-bx+c,不等式f(x)<0的解集是(-1,3),f(7+|t|)>f(1+t2),求實(shí)數(shù)t的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十七選修4-4第一節(jié)練習(xí)卷(解析版) 題型:解答題

在極坐標(biāo)系下,已知圓O:ρ=cosθ+sinθ和直線l:ρsin(θ-)=.

(1)求圓O和直線l的直角坐標(biāo)方程.

(2)當(dāng)θ∈(0,π)時(shí),求直線l與圓O公共點(diǎn)的一個(gè)極坐標(biāo).

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十七選修4-4第一節(jié)練習(xí)卷(解析版) 題型:解答題

求經(jīng)過(guò)極點(diǎn)O(0,0),A(6,),B(6,)三點(diǎn)的圓的極坐標(biāo)方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十一第十章第八節(jié)練習(xí)卷(解析版) 題型:選擇題

離散型隨機(jī)變量X的概率分布規(guī)律為P(X=n)=(n=1,2,3,4),其中a是常數(shù),P(<X<)的值為(  )

(A) (B) (C) (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高中數(shù)學(xué)全國(guó)各省市理科導(dǎo)數(shù)精選22道大題練習(xí)卷(解析版) 題型:解答題

已知函數(shù)的圖象與的圖象關(guān)于直線對(duì)稱。

()若直線的圖像相切, 求實(shí)數(shù)的值;

()判斷曲線與曲線公共點(diǎn)的個(gè)數(shù).

()設(shè),比較的大小, 并說(shuō)明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年高中數(shù)學(xué)全國(guó)各省市理科導(dǎo)數(shù)精選22道大題練習(xí)卷(解析版) 題型:解答題

設(shè),其中是常數(shù),且

1)求函數(shù)的極值;

2)證明:對(duì)任意正數(shù),存在正數(shù),使不等式成立;

3)設(shè),且,證明:對(duì)任意正數(shù)都有:

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2014年廣東省廣州市畢業(yè)班綜合測(cè)試一理科數(shù)學(xué)試卷(解析版) 題型:選擇題

關(guān)于直線對(duì)稱的圓的方程為( )

A. B.

C. D.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案