設(shè),,其中是常數(shù),且.
(1)求函數(shù)的極值;
(2)證明:對(duì)任意正數(shù),存在正數(shù),使不等式成立;
(3)設(shè),且,證明:對(duì)任意正數(shù)都有:.
(1)當(dāng)時(shí),取極大值,但沒(méi)有極小值(2)見(jiàn)解析(3)見(jiàn)解析
【解析】(1)∵, -----------------1分
由得,,
∴,即,解得,-----------------3分
故當(dāng)時(shí),;當(dāng)時(shí),;
∴當(dāng)時(shí),取極大值,但沒(méi)有極小值.-----------------4分
(2)∵,
又當(dāng)時(shí),令,則,
故,
因此原不等式化為,即, -----------------6分
令,則,
由得:,解得,
當(dāng)時(shí),;當(dāng)時(shí),.
故當(dāng)時(shí),取最小值,-----------------8分
令,則.
故,即.
因此,存在正數(shù),使原不等式成立.-----------------10分
(3)對(duì)任意正數(shù),存在實(shí)數(shù)使,,
則,,
原不等式,
-----------------14分
由(1)恒成立,
故,
取,
即得,
即,故所證不等式成立. -----------------14分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十二第十章第九節(jié)練習(xí)卷(解析版) 題型:填空題
若隨機(jī)變量ξ的分布列為:P(ξ=m)=,P(ξ=n)=a.若E(ξ)=2,則D(ξ)的最小值等于 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時(shí)提升作業(yè)七十一第十章第八節(jié)練習(xí)卷(解析版) 題型:填空題
隨機(jī)變量η的分布列如下:
η | 1 | 2 | 3 | 4 | 5 | 6 |
P | 0.2 | x | 0.35 | 0.1 | 0.15 | 0.2 |
則①x= ;②P(η>3)= ;
③P(1<η≤4)= .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高中數(shù)學(xué)全國(guó)各省市理科導(dǎo)數(shù)精選22道大題練習(xí)卷(解析版) 題型:解答題
已知函數(shù)在處的切線(xiàn)方程為.
(1)求函數(shù)的解析式;
(2)若關(guān)于的方程恰有兩個(gè)不同的實(shí)根,求實(shí)數(shù)的值;
(3)數(shù)列滿(mǎn)足,,求的整數(shù)部分.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年高中數(shù)學(xué)全國(guó)各省市理科導(dǎo)數(shù)精選22道大題練習(xí)卷(解析版) 題型:解答題
已知函數(shù),,函數(shù)的圖象在點(diǎn)處的切線(xiàn)平行于軸.
(1)確定與的關(guān)系;
(2)試討論函數(shù)的單調(diào)性;
(3)證明:對(duì)任意,都有成立。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年陜西省咸陽(yáng)市高考模擬考試(一)理科數(shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù),x?R.
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)先縮短到原來(lái)的,把所得到的圖象再向左平移單位,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014年廣東省廣州市畢業(yè)班綜合測(cè)試一理科數(shù)學(xué)試卷(解析版) 題型:填空題
如圖,是圓的切線(xiàn),切點(diǎn)為點(diǎn),直線(xiàn)與圓交于、兩點(diǎn),的角平分線(xiàn)交弦、于、兩點(diǎn),已知,,則的值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年(安徽專(zhuān)用)高考數(shù)學(xué)(文)仿真模擬卷2練習(xí)卷(解析版) 題型:解答題
設(shè)函數(shù)f(x)=sin+sin+cos ωx(其中ω>0),且函數(shù)f(x)的圖象的兩條相鄰的對(duì)稱(chēng)軸間的距離為.
(1)求ω的值;
(2)將函數(shù)y=f(x)的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的2倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)g(x)在區(qū)間上的最大值和最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com