已知tan(2α+β)=3,tan(α+β)=1,則tanα=
 
考點(diǎn):兩角和與差的正切函數(shù)
專題:三角函數(shù)的求值
分析:由題意可得tanα=tan[(2α+β)-(α+β)]=
tan(2α+β)-tan(α+β)
1+tan(2α+β)tan(α+β)
,代值計(jì)算即可.
解答: 解:∵tan(2α+β)=3,tan(α+β)=1,
∴tanα=tan[(2α+β)-(α+β)]
=
tan(2α+β)-tan(α+β)
1+tan(2α+β)tan(α+β)

=
3-1
1+3×1
=
1
2
,
故答案為:
1
2
點(diǎn)評(píng):本題考查兩角差的正切公式,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=2px(p>0)上有一點(diǎn)的縱坐標(biāo)為-4
2
,這個(gè)點(diǎn)到準(zhǔn)線的距離是6,求拋物線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

寫出圓心為C(1,-2),半徑r=3的圓的方程,并判斷點(diǎn)M(4,-2)、N(1,0)、P(5,1)與圓C的位置關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
3
x3-
1
2
(a+1)x2+ax+1
,a∈R.若函數(shù)f(x)在區(qū)間(-1,1)內(nèi)是減函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的通項(xiàng)公式an=
n+1,n為正奇數(shù)
2n,n為正偶數(shù)
,則{an}的前n項(xiàng)和為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓和雙曲線還可以由下面的方式定義:平面內(nèi)到定點(diǎn)的距離和定直線(定點(diǎn)在定直線外)的距離的比為常數(shù)的點(diǎn)的集合.這里定點(diǎn)就是焦點(diǎn),定直線就是與焦點(diǎn)相對(duì)應(yīng)的準(zhǔn)線,比如橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)的準(zhǔn)線方程為x=±
a2
c
(c為半焦距),雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的準(zhǔn)線方程為x=±
a2
c
(c為半焦距)這里的常數(shù)就是其離心率e.現(xiàn)在設(shè)橢圓
x2
a2
+
y2
b2
=1(a>0,b>0)的左焦點(diǎn)為F,過F的直線與橢圓相交于A、B兩點(diǎn),那么以弦AB為直徑的圓與左準(zhǔn)線的位置關(guān)系應(yīng)該是
 
,那么類比到雙曲線中結(jié)論是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)y=f(x)滿足條件f(x+2)=-f(x),且函數(shù)y=f(x-1)為奇函數(shù),給出以下四個(gè)命題:
①函數(shù)f(x)是周期函數(shù);       
②函數(shù)f(x)的圖象關(guān)于點(diǎn)(-1,0)對(duì)稱;
③函數(shù)f(x)為R上的偶函數(shù);   
④函數(shù)f(x)為R上的單調(diào)函數(shù).
其中真命題的序號(hào)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖程序段以后輸出的結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線x2=
1
2
y的焦點(diǎn)F到其準(zhǔn)線l的距離是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案