(1)寫(xiě)出斜率為2,在y軸上的截距為m的直線方程,并求當(dāng)直線通過(guò)(1,2)點(diǎn)時(shí)m的值;

(2)一直線在x軸上的截距為-2,傾斜角是,求此直線方程.

答案:
解析:

  

  溫馨提示:注意正確理解截距的概念,截距不是距離,截距是直線(也是曲線)與坐標(biāo)軸交點(diǎn)的相應(yīng)坐標(biāo),直線方程的斜截式y(tǒng)=kx+b:①b為直線l在y軸上的截距;②斜截式方程可由過(guò)點(diǎn)(0,b)的點(diǎn)斜式方程得到;③當(dāng)k≠0時(shí),斜截式方程就是一次函數(shù)的表示形式,還要注意b是y軸上的截距.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F1、F2分別為橢圓C:
x2
a2
+
y2
b2
=1
的左、右兩個(gè)焦點(diǎn).
(1)若橢圓C上的點(diǎn)A(1,
3
2
)到F1、F2兩點(diǎn)的距離之和等于4,寫(xiě)出橢圓C的方程和焦點(diǎn)坐標(biāo).
(2)已知圓心在原點(diǎn)的圓具有性質(zhì):若M、N是圓上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩點(diǎn),點(diǎn)P是圓上的任意一點(diǎn),當(dāng)直線PM、PN的斜率都存在,并記作KPM、KPN那么KPMKPN=-1.試對(duì)橢圓
x2
a2
+
y2
b2
=1
寫(xiě)出類(lèi)似的性質(zhì),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)是定義在[-2π,2π]上的偶函數(shù),當(dāng)x∈[0,π]時(shí),y=f(x)=cosx,當(dāng)x∈(π,2π]時(shí),f(x)的圖象是斜率為
2
π
,在y軸上截距為-2的直線在相應(yīng)區(qū)間上的部分.
(1)求f(-2π),f(-
π
3
);
(2)求f(x),并作出圖象,寫(xiě)出其單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面直角坐標(biāo)系xoy中,直線x-y+1=0截以原點(diǎn)O為圓心的圓所得的弦長(zhǎng)為
6

(1)求圓O的方程;
(2)若直線l與圓O切于第一象限,且與坐標(biāo)軸交于D,E,當(dāng)DE長(zhǎng)最小時(shí),求直線l的方程;
(3)問(wèn)是否存在斜率為2的直線m,使m被圓O截得的弦為AB,以AB為直徑的圓經(jīng)過(guò)原點(diǎn).若存在,寫(xiě)出直線m的方程;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011年遼寧省高一第三次月考數(shù)學(xué)試卷 題型:解答題

(本題滿(mǎn)分12分)

已知圓C:. (1)寫(xiě)出圓C的標(biāo)準(zhǔn)方程;(2)是否存在斜率為1的直線m,使m被圓C截得的弦為AB,且以AB為直徑的圓過(guò)原點(diǎn).若存在,求出直線m的方程; 若不存在,說(shuō)明理由.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案