已知向量
m
=(sinx,
3
sinx),
n
=(sinx,-cosx),設函數(shù)f(x)=
m
n

(1)求函數(shù)f(x)的單調遞增區(qū)間;
(2)在△ABC中,a,b,c分別是角A,B,C的對邊,A為銳角,若f(A)+sin(2A-
π
6
)=1,b+c=7,△ABC的面積為2
3
,求邊a的長.
考點:三角函數(shù)中的恒等變換應用,平面向量數(shù)量積的運算
專題:三角函數(shù)的圖像與性質
分析:(1)利用二倍角公式和兩角和公式對函數(shù)解析式化簡整理,進而根據(jù)正弦函數(shù)的性質確定函數(shù)的單調增區(qū)間.
(2)根據(jù)(1)中函數(shù)的解析式,根據(jù)f(A)+sin(2A-
π
6
)=1,求得A,根據(jù)三角形面積公式求得bc的值,利用余弦定理求得a.
解答: 解:(1)由題意得f(x)=sin2x-
3
sinxcosx=
1-cos2x
2
-
3
2
sin2x=
1
2
-sin(2x+
π
6
),
令2kπ+
π
2
≤2x+
π
6
≤2kπ+
2
,k∈Z,

解得:kπ+
π
6
≤x≤kπ+
3
,k∈Z
所以函數(shù)f(x)的單調遞增區(qū)間為[kπ+
π
6
,kπ+
3
],k∈Z
(2)由f(A)+sin(2A-
π
6
)=1得:
1
2
-sin(2A+
π
6
)+sin(2A-
π
6
)=1,
化簡得:cos2A=-
1
2

又因為0<A<
π
2
,解得:A=
π
3
,
由題意知:S△ABC=
1
2
bcsinA=2
3
,解得bc=8,
又b+c=7,所以a2=b2+c2-2bccosA=(b+c)2-2bc(1+cosA)=49-2×8×(1+
1
2
)=25,
∴a=5
點評:本題只要考查了三角函數(shù)恒等變換的應用,三角函數(shù)圖象與性質,余弦定理的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在△ABC中,若sin2B=sin2C,則△ABC為( 。
A、等腰三角形
B、直角三角形
C、等邊三角形
D、等腰或直角三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在銳角△ABC中,已知
3
a=2csinA.
(1)確定角C的大小;
(2)若c=
7
,且S△ABC=
3
3
2
,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓O的方程為x2+y2=13,直線l:x0x+y0y=13,設點A(x0,y0).
(1)若點A為(3,4),試判斷直線l與圓C的位置關系;
(2)若點A在圓O上,且x0=2,y0>0,過點A作直線AM,AN分別交圓O于M,N兩點,且直線AM和AN的斜率互為相反數(shù).
①若直線AM過點O,求直線MN的斜率;
②試問:不論直線AM的斜率怎樣變化,直線MN的斜率是否為定值?若是,求出該定值;若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2msin2x-2
3
msinxcosx+n,(m>0),定義域為[0,
π
2
],值域為[-5,4].
(1)求f(x)表達式;
(2)若函數(shù)g(x)與f(x)關于直線x=
π
2
對稱,求g(x)的增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x3+ax2-2x+5,求證:當
5
2
≤a≤
23
4
時,f(x)在(-2,
1
6
)上單調遞減.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某數(shù)學老師身高175cm,他爺爺、父親和兒子的身高分別是172cm、169cm和181cm.已知兒子的身高與父親的身高有關.
(1)列表(用表格表示題目中父子之間兒子的身高y與父親的身高x對應關系);
父親的身高x(cm)
 
 
 
兒子的身高y(cm)
 
 
 
(2)用線性回歸分析的方法預測該教師孫子的身高.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某學校計劃在一塊直角三角形ABC的空地上修建一個占地面積為S的矩形ADEF健身場地,如圖,A=
π
2
,∠ABC=
π
6
,點D在AC上,點E在斜邊BC上,且點F在AB上,AC=40米,設AD=x米.
(1)試用x表示S,并求S的取值范圍;
(2)若矩形健身場地面積不小于144
3
平方米,求x的取值范圍;
(3)設矩形健身場地每平方米的造價為
37
S
,再把矩形ADEF以外(陰影部分)鋪上草坪,每平方米的造價為
12
S
,求總造價T關于S的函數(shù)T=f(S);并求出AD的長使總造價T最低(不要求求出最低造價).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
3
sinθ+cosθ=m+1,則實數(shù)m的取值范圍是
 

查看答案和解析>>

同步練習冊答案