【題目】從甲、乙、丙、丁、戊五名志愿者中選派三人分別從事翻譯、導(dǎo)游、禮儀三項(xiàng)不同工作,若其中乙和丙只能從事前兩項(xiàng)工作,其余三人均能從事這三項(xiàng)工作,則不同的選派方案共有( )
A.36種B.12種C.18種D.24種
【答案】A
【解析】
利用分類(lèi)加法原理,對(duì)所選的3人中分三種情況:乙和丙有2人;乙和丙有1人;都沒(méi)有;再利用排列數(shù)和組合數(shù)公式計(jì)算,即可得答案.
利用分類(lèi)加法原理,對(duì)所選的3人中分三種情況:
乙和丙有2人,對(duì)兩個(gè)人進(jìn)行排列,第三項(xiàng)工作再?gòu)某讼碌?/span>3人中選1人,即;
乙和丙有1人,則有2種情況,這個(gè)人可以從兩項(xiàng)工作中任取一項(xiàng)有2種情況,則乘下的兩項(xiàng)工作由3個(gè)人來(lái)排列,即;
乙和丙都沒(méi)有,三項(xiàng)工作就由其他3個(gè)人來(lái)進(jìn)行排列,即;
∴.
故選:A
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(Ⅰ)求的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),試判斷零點(diǎn)的個(gè)數(shù);
(Ⅲ)當(dāng)時(shí),若對(duì),都有()成立,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的圓心在直線(xiàn):上,圓被軸截得弦長(zhǎng)為4,且過(guò)點(diǎn).
(1)求圓的方程;
(2)若點(diǎn)為直線(xiàn):上的動(dòng)點(diǎn),由點(diǎn)向圓作切線(xiàn),求切線(xiàn)長(zhǎng)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線(xiàn)過(guò)焦點(diǎn)且平行于軸的弦長(zhǎng)為.點(diǎn),直線(xiàn)與交于兩點(diǎn),
(1)求拋物線(xiàn)的方程;
(2)若不平行于軸,且為坐標(biāo)原點(diǎn)),證明:直線(xiàn)過(guò)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐的底面是矩形,,點(diǎn)為的中點(diǎn),與交于點(diǎn).
(Ⅰ)求異面直線(xiàn)與所成角的余弦值;
(Ⅱ)求證:;
(Ⅲ)求直線(xiàn)與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解手機(jī)品牌的選擇是否和年齡的大小有關(guān),隨機(jī)抽取部分華為手機(jī)使用者和蘋(píng)果機(jī)使用者進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下表:
年齡 手機(jī)品牌 | 華為 | 蘋(píng)果 | 合計(jì) |
30歲以上 | 40 | 20 | 60 |
30歲以下(含30歲) | 15 | 25 | 40 |
合計(jì) | 55 | 45 | 100 |
附:
P() | 0.10 | 0.05 | 0.010 | 0.001 |
2.706 | 3.841 | 6.635 | 10.828 |
根據(jù)表格計(jì)算得的觀測(cè)值,據(jù)此判斷下列結(jié)論正確的是( )
A.沒(méi)有任何把握認(rèn)為“手機(jī)品牌的選擇與年齡大小有關(guān)”
B.可以在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為“手機(jī)品牌的選擇與年齡大小有關(guān)”
C.可以在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為“手機(jī)品牌的選擇與年齡大小有關(guān)”
D.可以在犯錯(cuò)誤的概率不超過(guò)0.01“手機(jī)品牌的選擇與年齡大小無(wú)關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)設(shè)曲線(xiàn),點(diǎn),為該曲線(xiàn)上不同的兩點(diǎn).求證:當(dāng)時(shí),直線(xiàn)的斜率大于-1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)某相鄰兩支圖象與坐標(biāo)軸分別變于點(diǎn),則方程所有解的和為( )
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com