9.如圖,四邊形ABCD是平行四邊形,點E在邊BA的延長線上,CE交AD于點F,∠ECA=∠D,求證:AC•BE=CE•AD.

分析 由四邊形ABCD是平行四邊形,∠ECA=∠D,易證得∠ECA=∠B,又由∠E是公共角,證得△EAC∽△ECB,然后由相似三角形的對應邊成比例,可得AC:BC=CE:BE,繼而可得AC•BE=CE•AD.

解答 證明:∵四邊形ABCD是平行四邊形,
∴BC=AD,CD∥AB,AD∥BC,
∴∠D=∠DAE=∠B,
∵∠ECA=∠D,
∴∠ECA=∠B,
∵∠E=∠E,
∴△EAC∽△ECB,
∴AC:BC=CE:BE,
∴AC•BE=CE•BC,
∴AC•BE=CE•AD.

點評 此題考查了相似三角形的判定與性質以及平行四邊形的性質.此題難度適中,注意掌握數(shù)形結合思想的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.下列敘述中:
①若min{m,n}=$\left\{\begin{array}{l}{m(m≤n)}\\{n(m>n)}\end{array}\right.$,則函數(shù)f(x)=min{x${\;}^{\frac{1}{3}}$,2x-2,1-3x}存在最大值;
②設函數(shù)f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$(x≠±1),則f(2)+f(3)+f(4)+f($\frac{1}{2}$)+f($\frac{1}{3}$)+f($\frac{1}{4}$)=0;
③設集合A=[0,$\frac{1}{2}$),B=[$\frac{1}{2}$,1],函數(shù)f(x)=$\left\{\begin{array}{l}{x+\frac{1}{2}(x∈A)}\\{-2x+2(x∈B)}\end{array}\right.$,若x0∈A,且f[f(x0)]∈A,則x0的取值范圍是($\frac{1}{4}$,$\frac{1}{2}$);
④設函數(shù)y=f(x)為函數(shù)y=$(\frac{1}{2})^{x}$的反函數(shù),且y=f(-x2-ax+1)在x∈(2,3)上單調遞增,則實數(shù)a∈[-4,-$\frac{8}{3}$);
⑤若函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-a(x<1)}\\{4(x-a)(x-2a),(x≥1)}\end{array}\right.$恰有2個零點,則實數(shù)a的取值范圍為[$\frac{1}{2}$,1)∪[2,+∞).
所有正確敘述的序號是①②③⑤.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知圓C的圓心在x軸上,并且過點A(-1,1)和B(1,3),則圓的方程是(x-2)2+y2=10.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.函數(shù)y=(a-1)x和y=log(3-a)x都是(0,+∞)上的增函數(shù),則a的取值范圍是1<a<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知集合U={1,2,3,4,5,6,7},A={x∈R|數(shù)軸上x到3的距離等于1,或x到6的距離等于1},B={x∈Z|$\frac{2x-11}{2-x}≥0$},求(∁UA)∪(∁UB).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.設{an}滿足:a1=2,an+1=Sn+n,n∈N*,求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.設不等式組$\left\{\begin{array}{l}{y≥0}\\{y≤4}\\{kx-y≥0}\\{kx-y-4k≤0}\end{array}\right.$表示的平面區(qū)域為W
(1)若k=2,M(x,y)為區(qū)域W內的動點,求x+2y的最大值;
(2)區(qū)域W內部的整點的個數(shù)有多少?(整點是指橫、縱坐標都是整數(shù)的點).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.某市城區(qū)實行三級階梯水價(階梯水價就是分段累計計費),第一階梯水價為每戶每月12噸以下(含12噸)部分,價格為1.60元/噸;第二階梯水價為每戶每月12-20 噸(含20噸)部分,價格為2.40元/噸;第三階梯水量為每戶每月20噸以上部分,價格為3.20元/噸,
(1)寫出某用戶每月用水量x噸與其水費y元之間的函數(shù)關系式;
(2)某用戶5月份的水費是31.2元,該用戶這個月用水多少噸?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.(1)求值:${8^{\frac{2}{3}}}+{2^{{{log}_2}3}}+{({\frac{1}{4}})^0}$;
(2)已知${x^{\frac{1}{2}}}+{x^{-\frac{1}{2}}}=4$,求x+x-1的值.

查看答案和解析>>

同步練習冊答案