【答案】
分析:(1)依題意,S
n+1-S
n=a
n+1=2S
n+4
n,即S
n+1=3S
n+4
n,設(shè)
,則
,從而可得b
n+1=3b
n,由此可求數(shù)列{b
n}的通項(xiàng)公式;
(2)由①知S
n=4
n+(a-4)×3
n-1,從而可得數(shù)列的通項(xiàng),作差,利用a
n+1≥a
n恒成立,即可求a的取值范圍.
解答:解:(1)依題意,S
n+1-S
n=a
n+1=2S
n+4
n,即S
n+1=3S
n+4
n,
設(shè)
,則
∴b
n+1=3b
n,
∵b
1=S
1-4=a-4
∴數(shù)列{b
n}的通項(xiàng)公式為b
n=(a-4)×3
n-1,n∈N
*.①(6分)
(2)由①知S
n=4
n+(a-4)×3
n-1,
于是,當(dāng)n≥2時(shí),a
n=S
n-S
n-1=4
n+(a-4)×3
n-1-[4
n-1+(a-4)×3
n-2]=3×4
n-1+2(a-4)3
n-2,
a
n+1-a
n=9×4
n-1+4(a-4)×3
n-2,
當(dāng)n≥2時(shí),a
n+1≥a
n等價(jià)于9×4
n-1+4(a-4)×3
n-2≥0
∴36×
+4(a-4)≥0
∴a≥-5.
綜上,所求的a的取值范圍是[-9,+∞).(12分)
點(diǎn)評(píng):本題考查數(shù)列遞推式,考查數(shù)列遞推通項(xiàng),考查恒成立問題,確定數(shù)列的通項(xiàng)是關(guān)鍵.