【題目】如圖,直棱柱中,分別是的中點(diǎn),,

1)證明:平面;

2)求二面角的正弦值.

【答案】(1)證明見解析(2)

【解析】

1)連接AC1,交A1C于點(diǎn)F,則FAC1的中點(diǎn),連接DF,則BC1DF,由此能證明BC1∥平面A1C

2)以C為坐標(biāo)原點(diǎn),CACB、CC1x軸、y軸、z軸建立空間坐標(biāo)系Cxyz,利用向量法能求出二面角DA1CE的正弦值.

1)如圖,連接于點(diǎn)F,則點(diǎn)F的中點(diǎn),連接.

因?yàn)?/span>D的中點(diǎn),

所以在中,是中位線,

所以.

因?yàn)?/span>平面,平面,

所以平面.

2)因?yàn)?/span>

所以,即.

則以C為坐標(biāo)原點(diǎn),分別以,xy,z軸的正方向,建立如圖所示的空間直角坐標(biāo)系,設(shè),

,,

,.

設(shè)是平面的一個(gè)法向量,

,即

,則,

.

設(shè)是平面的一個(gè)法向量,

,即,

,則,

.

所以,

所以,

即二面角的正弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和為,,且.

1)求證:數(shù)列是等差數(shù)列;

2)設(shè),求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】銷售甲種商品所得利潤(rùn)是萬(wàn)元,它與投入資金萬(wàn)元的關(guān)系有經(jīng)驗(yàn)公式;銷售乙種商品所得利潤(rùn)是萬(wàn)元,它與投入資金萬(wàn)元的關(guān)系有經(jīng)驗(yàn)公式,其中,為常數(shù).現(xiàn)將3萬(wàn)元資金全部投入甲、乙兩種商品的銷售;若全部投入甲種商品,所得利潤(rùn)為萬(wàn)元;若全部投入乙種商品,所得利潤(rùn)為1萬(wàn)元,若將3萬(wàn)元資金中的萬(wàn)元投入甲種商品的銷售,余下的投入乙種商品的銷售,則所得利潤(rùn)總和為萬(wàn)元.

1)求函數(shù)的解析式;

2)怎樣將3萬(wàn)元資金分配給甲、乙兩種商品,才能使所得利潤(rùn)總和最大,并求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知平面多邊形中,,,,,的中點(diǎn),現(xiàn)將三角形沿折起,使.

(1)證明:平面;

(2)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校舉辦了一場(chǎng)主題為“愛詩(shī)詞、愛祖國(guó)”的詩(shī)詞知識(shí)競(jìng)賽,從參賽的全體學(xué)生中抽出30人的成績(jī)作為樣本.對(duì)這30名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì),并按、、、、分組,得到如圖所示的頻率分布直方圖.

1)求圖中實(shí)數(shù)的值;

2)估計(jì)參加這次知識(shí)競(jìng)賽的學(xué)生的平均成績(jī)及成績(jī)的中位數(shù)(平均成績(jī)用每組中點(diǎn)值做代表,結(jié)果均保留一位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】張三同學(xué)從每年生日時(shí)對(duì)自己的身高測(cè)量后記錄如表:

附:回歸直線的斜率和截距的最小二乘法估計(jì)公式分別為:,

(1)求身高關(guān)于年齡的線性回歸方程;(可能會(huì)用到的數(shù)據(jù):(cm))

(2)利用(1)中的線性回歸方程,分析張三同學(xué)歲起到歲身高的變化情況,如 歲之前都符合這一變化,請(qǐng)預(yù)測(cè)張三同學(xué) 歲時(shí)的身高。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),在以為極點(diǎn), 軸的正半軸為極軸的極坐標(biāo)系中,曲線是圓心為,半徑為1的圓.

(1)求曲線, 的直角坐標(biāo)方程;

(2)設(shè)為曲線上的點(diǎn), 為曲線上的點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出三個(gè)命題:①直線上有兩點(diǎn)到平面的距離相等,則直線平行平面;②夾在兩平行平面間的異面直線段的中點(diǎn)的連線平行于這個(gè)平面;③過空間一點(diǎn)必有唯一的平面與兩異面直線平行.正確的是( )

A. ②③B. ①②C. ①②③D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,以相同的長(zhǎng)度單位建立極坐標(biāo)系.己知直線的直角坐標(biāo)方程為,曲線C的極坐標(biāo)方程為

1)設(shè)t為參數(shù),若,求直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;

2)已知:直線與曲線C交于A,B兩點(diǎn),設(shè),且,依次成等比數(shù)列,求實(shí)數(shù)a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案