【題目】我國歷法中將一年分為春、夏、秋、冬四個季節(jié),每個季節(jié)有六個節(jié)氣,如夏季包含立夏、小滿、芒種、夏至、小暑以及大暑.某美術(shù)學(xué)院甲、乙、丙、丁四位同學(xué)接到繪制二十四節(jié)氣的彩繪任務(wù),現(xiàn)四位同學(xué)抽簽確定各自完成哪個季節(jié)中的六幅彩繪,在制簽及抽簽公平的前提下,甲沒有抽到繪制春季六幅彩繪任務(wù)且乙沒有抽到繪制夏季六幅彩繪任務(wù)的概率為_________.

【答案】

【解析】

先分類討論求出所求事件數(shù),再利用古典概型的方法計算概率即可.

將“甲沒有抽到繪制春季六幅彩繪任務(wù)且乙沒有抽到繪制夏季六幅彩繪任務(wù)”這一事件可以分為兩類:

第一類:甲抽到夏季六幅彩繪任務(wù)的事件數(shù)為:,

第二類:甲抽不到夏季六幅彩繪任務(wù)的事件數(shù)為:,

總的事件數(shù)為:,故所求概率為:.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地實(shí)行垃圾分類后,政府決定為三個小區(qū)建造一座垃圾處理站M,集中處理三個小區(qū)的濕垃圾.已知的正西方向,的北偏東方向,的北偏西方向,且在的北偏西方向,小區(qū)相距相距.

1)求垃圾處理站與小區(qū)之間的距離;

2)假設(shè)有大、小兩種運(yùn)輸車,車在往返各小區(qū)、處理站之間都是直線行駛,一輛大車的行車費(fèi)用為每公里元,一輛小車的行車費(fèi)用為每公里元(其中為滿足內(nèi)的正整數(shù)) .現(xiàn)有兩種運(yùn)輸濕垃圾的方案:

方案1:只用一輛大車運(yùn)輸,從出發(fā),依次經(jīng)再由返回到;

方案2:先用兩輛小車分別從運(yùn)送到,然后并各自返回到,一輛大車從直接到再返回到.試比較哪種方案更合算?請說明理由. 結(jié)果精確到小數(shù)點(diǎn)后兩位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)據(jù)是鄭州市普通職工個人的年收入,若這個數(shù)據(jù)的中位數(shù)為,平均數(shù)為,方差為,如果再加上世界首富的年收入,則這個數(shù)據(jù)中,下列說法正確的是( )

A.年收入平均數(shù)大大增大,中位數(shù)一定變大,方差可能不變

B.年收入平均數(shù)大大增大,中位數(shù)可能不變,方差變大

C.年收入平均數(shù)大大增大,中位數(shù)可能不變,方差也不變

D.年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處取得極小值.

(1)求實(shí)數(shù)的值;

(2)若函數(shù)存在極大值與極小值,且函數(shù)有兩個零點(diǎn),求實(shí)數(shù)的取值范圍.(參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】淮北市第一次模擬考試?yán)砜乒部颊Z文、數(shù)學(xué)、英語、物理、化學(xué)、生物六科,安排在某兩日的四個半天考完,每個半天考一科或兩科.若語文、數(shù)學(xué)、物理三科中任何兩科不能排在同一個半天,則此次考試不同安排方案的種數(shù)有( )(同一半天如果有兩科考試不計順序)

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知動點(diǎn)P到點(diǎn)的距離與它到直線l的距離d的比值為,設(shè)動點(diǎn)P形成的軌跡為曲線C.

(Ⅰ)求曲線C的方程;

(Ⅱ)過點(diǎn)的直線與曲線C交于A,B兩點(diǎn),設(shè),,過A點(diǎn)作,垂足為,過B點(diǎn)作,垂足為,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:對于一個項數(shù)為的數(shù)列,若存在,使得數(shù)列的前k項和與剩下項的和相等(若僅為1項,則和為該項本身),我們稱該數(shù)列是等和數(shù)列”.例如:因?yàn)?/span>,所以數(shù)列32,1等和數(shù)列”.請解答以下問題:

1)數(shù)列1,2,p,4等和數(shù)列,求實(shí)數(shù)p的值;

2)項數(shù)為的等差數(shù)列的前n項和為,求證:等和數(shù)列”.

3是公比為q項數(shù)為的等比數(shù)列,其中恒成立.判斷是不是等和數(shù)列,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),若存在,使得關(guān)于的方程有三個不等實(shí)根,則實(shí)數(shù)的取值范圍為(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,幾何體中,,均為邊長為2的正三角形,且平面平面,四邊形為正方形.

1)若平面平面,求證:平面平面;

2)若二面角,求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案