【題目】已知向量 , , (m>0,n>0),若m+n∈[1,2],則 的取值范圍是(
A.
B.
C.
D.

【答案】B
【解析】解:根據(jù)題意,向量 , =(3m+n,m﹣3n),
= = ,
令t= ,則 = t,
而m+n∈[1,2],即1≤m+n≤2,在直角坐標(biāo)系表示如圖,
t= 表示區(qū)域中任意一點(diǎn)與原點(diǎn)(0,0)的距離,
分析可得: ≤t<2,
又由 = t,
<2
故選:B.

根據(jù)題意,由向量的坐標(biāo)運(yùn)算公式可得 =(3m+n,m﹣3n),再由向量模的計(jì)算公式可得 = ,可以令t= ,將m+n∈[1,2]的關(guān)系在直角坐標(biāo)系表示出來(lái),分析可得t= 表示區(qū)域中任意一點(diǎn)與原點(diǎn)(0,0)的距離,進(jìn)而可得t的取值范圍,又由 = t,分析可得答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《九章算術(shù)》是我國(guó)古代數(shù)學(xué)經(jīng)典名著,它在集合學(xué)中的研究比西方早1千年,在《九章算術(shù)》中,將四個(gè)面均為直角三角形的四面體稱(chēng)為鱉臑,已知某“鱉臑”的三視圖如圖所示,則該鱉臑的外接球的表面積為(
A.200π
B.50π
C.100π
D. π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義在R上的函數(shù)f(x)=ex+mx2﹣m(m>0),當(dāng)x1+x2=1時(shí),不等式f(x1)+f(0)>f(x2)+f(1)恒成立,則實(shí)數(shù)x1的取值范圍是(
A.(﹣∞,0)
B.
C.
D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)f(x)=xlnx+ax,a∈R.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若對(duì)x>1,f(x)>(b+a﹣1)x﹣b恒成立,求整數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)招聘中,依次進(jìn)行A科、B科考試,當(dāng)A科合格時(shí),才可考B科,且兩科均有一次補(bǔ)考機(jī)會(huì),兩科都合格方通過(guò).甲參加招聘,已知他每次考A科合格的概率均為 ,每次考B科合格的概率均為 .假設(shè)他不放棄每次考試機(jī)會(huì),且每次考試互不影響.
(I)求甲恰好3次考試通過(guò)的概率;
(II)記甲參加考試的次數(shù)為ξ,求ξ的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列的前n項(xiàng)和為,并且滿足,

(1)求數(shù)列的通項(xiàng)公式;

(2)若,數(shù)列的前n項(xiàng)和為,求;

(3)在(2)的條件下,是否存在常數(shù),使得數(shù)列為等比數(shù)列?若存在,試求出;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)P是長(zhǎng)軸長(zhǎng)為 的橢圓Q: 上異于頂點(diǎn)的一個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn),A為橢圓的右頂點(diǎn),點(diǎn)M為線段PA的中點(diǎn),且直線PA與OM的斜率之積恒為
(1)求橢圓Q的方程;
(2)設(shè)過(guò)左焦點(diǎn)F1且不與坐標(biāo)軸垂直的直線l交橢圓于C,D兩點(diǎn),線段CD的垂直平分線與x軸交于點(diǎn)G,點(diǎn)G橫坐標(biāo)的取值范圍是 ,求|CD|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知點(diǎn)為圓心的圓與軸交于軸交與,其中為原點(diǎn).

(1)求證:的面積為定值;

(2)設(shè)直線與圓交于點(diǎn),若,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知單調(diào)遞增的等比數(shù)列滿足,且的等差中項(xiàng).

(Ⅰ)求數(shù)列的通項(xiàng)公式;

(Ⅱ)若,對(duì)任意正數(shù)數(shù), 恒成立,試求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案