10.設(shè)f(x)是定義在R上的周期為2的偶函數(shù),當(dāng)x∈[-1,0)時(shí),f(x)=4x+1,則f($\frac{5}{2}$)=$\frac{3}{2}$.

分析 利用函數(shù)的奇偶性以及函數(shù)的周期性,求解即可.

解答 解:f(x)是定義在R上的周期為2的偶函數(shù),當(dāng)x∈[-1,0)時(shí),f(x)=4x+1,
則f($\frac{5}{2}$)=f($\frac{1}{2}$)=f($-\frac{1}{2}$)=${4}^{-\frac{1}{2}}$+1=$\frac{3}{2}$.
故答案為:$\frac{3}{2}$.

點(diǎn)評(píng) 本題考查函數(shù)的奇偶性的性質(zhì)的應(yīng)用,函數(shù)值的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖1,有一建筑物OP,為了測(cè)量它的高度,在地面上選一基線AB,設(shè)其長(zhǎng)度為d,在A點(diǎn)處測(cè)得P點(diǎn)的仰角為α,在B點(diǎn)處測(cè)得P點(diǎn)的仰角為β.
(1)若AB=40,α=30°,β=45°,且∠AOB=30°,求建筑物的高度h;
(2)經(jīng)分析若干測(cè)得的數(shù)據(jù)后,發(fā)現(xiàn)將基線AB調(diào)整到線段AO上(如圖2),α與β之差盡量大時(shí),可以
提高測(cè)量精確度,設(shè)調(diào)整后AB的距離為d,tanβ=$\frac{4}zn3dlbl$,建筑物的實(shí)際高度為21,試問d為何值時(shí),β-α最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在等差數(shù)列{an}中,a1=3,d=2.a(chǎn)n=25,則n=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.如圖所示,在直角梯形BCEF中,∠CBF=∠BCE=90°,A、D分別是BF、CE上的點(diǎn),AD∥BC,且AB=DE=2BC=2AF(如圖1).將四邊形ADEF沿AD折起,連結(jié)BE、BF、CE(如圖2).在折起的過程中,下列說法中錯(cuò)誤的個(gè)數(shù)是( 。

①AC∥平面BEF;
②B、C、E、F四點(diǎn)不可能共面;
③若EF⊥CF,則平面ADEF⊥平面ABCD;
④平面BCE與平面BEF可能垂直.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知f(x)=$\left\{\begin{array}{l}{x^2}-3,(x<0)\\ x-1,(x≥0)\end{array}$,若f(x)=2,則x=3或$-\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直角△ABC的頂點(diǎn)A的坐標(biāo)為(-2,0),直角頂點(diǎn)B的坐標(biāo)為(1,$\sqrt{3}$),頂點(diǎn)C在x軸上.
(1)求邊BC所在直線的方程;
(2)求直線△ABC的斜邊中線所在的直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.函數(shù)f(x)=lnx在點(diǎn)P(x0,f(x0))處的切線l與函數(shù)lg(x)=ex的圖象也相切,則滿足條件的切點(diǎn)P的個(gè)數(shù)有( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線l1:(k-3)x+(4-k)y+1=0與l2:2(k-3)x-2y+3=0平行,則k的值是( 。
A.1或3B.5C.3或5D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.“函數(shù)f(x)=|a-3x|在[1,+∞)上為單調(diào)遞增函數(shù)”是“a=3”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案