(本題滿分15分)已知分別以為公差的等差數(shù)列,,滿足.(Ⅰ)若,且存在正整數(shù),使得,求的最小值;(Ⅱ)若,且數(shù)列,的前項(xiàng)滿足,求 的通項(xiàng)公式.
(Ⅰ)80  (Ⅱ)
(Ⅰ)證明:,
,即,   ……4分
. 等號(hào)當(dāng)且僅當(dāng)時(shí)成立,
時(shí), .                 ……7分
(Ⅱ),,

=           ……10分
=

,…13分
故得,.
因此的通項(xiàng)公式為.          ……15分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分14分)已知點(diǎn)(N)順次為直線上的點(diǎn),點(diǎn)(N)順次為軸上的點(diǎn),其中,對(duì)任意的N,點(diǎn)、、構(gòu)成以為頂點(diǎn)的等腰三角形.(Ⅰ)證明:數(shù)列是等差數(shù)列;(Ⅱ)求證:對(duì)任意的N,是常數(shù),并求數(shù)列的通項(xiàng)公式;   (Ⅲ)在上述等腰三角形中是否存在直角三角形,若存在,求出此時(shí)的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

((12分)已知函數(shù).
(Ⅰ) 若數(shù)列{an}的首項(xiàng)為a1=1,(nÎN+),求{an}的通項(xiàng)公式an;
(Ⅱ) 設(shè)bn=an+12+an+22+¼+a2n+12,是否存在最小的正整數(shù)k,使對(duì)于任意nÎN+bn<成立.若存在,求出k的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分)設(shè).?dāng)?shù)列滿足
.(1)求證:是等差數(shù)列;
(2)求證: 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分12分) 已知數(shù)列{an}的前項(xiàng)和為Sn,且滿足a1=1,2Sn=nan+1(1)求an; (2)設(shè)bn= ,求b1+b2+…+bn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)已知數(shù)列{an}的前n項(xiàng)和為Sn, 且滿足條件:4S n =+ 4n – 1 , nÎN*.
(1) 證明:(a n– 2)2="0" (n ³ 2);(2) 滿足條件的數(shù)列不惟一,試至少求出數(shù)列{an}的的3個(gè)不同的通項(xiàng)公式 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

定義“等和數(shù)列”,在一個(gè)數(shù)列中,如果每一項(xiàng)與它的后一項(xiàng)的和都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等和數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公和。已知數(shù)列是等和數(shù)列且,公和為5,那么的值為_______,且這個(gè)數(shù)列前21項(xiàng)和的值為_______。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)數(shù)列的前n項(xiàng)和為,令,稱為數(shù)列,,……,的“理想數(shù)”,已知數(shù)列,,……,的“理想數(shù)”為2008,那么數(shù)列2,,,……,的“理想數(shù)”為
A.2002B.2004C.2006D.2008

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知數(shù)列滿足,,求_______.

查看答案和解析>>

同步練習(xí)冊(cè)答案