已知a,b,c都是實數(shù),那么p:“acbc”是q:“ab”的( 。

A.充分不必要條件

B.必要不充分條件

C.充要條件

D.既不充分又不必要條件

解析:pq,如c<0時;qp,如c=0時,故選D.

答案:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

11、已知a、b、c是互不相等的非零實數(shù).若用反證法證明三個方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一個方程有兩個相異實根,應(yīng)假設(shè)成( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•普陀區(qū)一模)如圖,已知圓C:x2+y2=r2與x軸負半軸的交點為A.由點A出發(fā)的射線l的斜率為k,且k為有理數(shù).射線l與圓C相交于另一點B.
(1)當(dāng)r=1時,試用k表示點B的坐標(biāo);
(2)當(dāng)r=1時,試證明:點B一定是單位圓C上的有理點;(說明:坐標(biāo)平面上,橫、縱坐標(biāo)都為有理數(shù)的點為有理點.我們知道,一個有理數(shù)可以表示為
qp
,其中p、q均為整數(shù)且p、q互質(zhì))
(3)定義:實半軸長a、虛半軸長b和半焦距c都是正整數(shù)的雙曲線為“整勾股雙曲線”.
當(dāng)0<k<1時,是否能構(gòu)造“整勾股雙曲線”,它的實半軸長、虛半軸長和半焦距的長恰可由點B的橫坐標(biāo)、縱坐標(biāo)和半徑r的數(shù)值構(gòu)成?若能,請嘗試探索其構(gòu)造方法;若不能,試簡述你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b是兩正數(shù),且關(guān)于x的方程x2+ax+2b=0和x2+2bx+a=0都有實根,則a+b的最小可能值是(    )

A.5               B.6               C.8              D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年四川成都七中高三“一診”模擬考試理科數(shù)學(xué)試卷(解析版) 題型:選擇題

已知、都是定義在R上的函數(shù),,,,則關(guān)于的方程有兩個不同實根的概率為(  )

A.   B.   C.   D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013屆安徽省高二下學(xué)期期中考試理科數(shù)學(xué)試卷(解析版) 題型:解答題

已知a、b、c是互不相等的非零實數(shù).若用反證法證明三個方程ax2+2bx+c=0,bx2+2cx+a=0,cx2+2ax+b=0至少有一個方程有兩個相異實根.

【解析】本試題主要考查了二次方程根的問題的綜合運用。運用反證法思想進行證明。

先反設(shè),然后推理論證,最后退出矛盾。證明:假設(shè)三個方程中都沒有兩個相異實根,

則Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0

相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,

(a-b)2+(b-c)2+(c-a)2≤0.顯然不成立。

證明:假設(shè)三個方程中都沒有兩個相異實根,

則Δ1=4b2-4ac≤0,Δ2=4c2-4ab≤0,Δ3=4a2-4bc≤0.

相加有a2-2ab+b2+b2-2bc+c2+c2-2ac+a2≤0,

(a-b)2+(b-c)2+(c-a)2≤0.                                      ①

由題意a、b、c互不相等,∴①式不能成立.

∴假設(shè)不成立,即三個方程中至少有一個方程有兩個相異實根.

 

查看答案和解析>>

同步練習(xí)冊答案